

AY 2022-23

6.5

Water in the Community

6.5.3 Off-Campus Water Conservation Support

MRIIRS Weblink to SDG 6:

https://mriirs.edu.in/sdg06-clean-water-and-sanitation/

Off-Campus Water Conservation Support by MRIIRS:

Manav Rachna Centre for Advance Water Technology & Management (**MRCAWTM**), MRIIRS, was established in 2017 to pursue teaching, research, consultancy and impart training programmes in hydrogeology, water resources engineering and management, water quality and collateral environment and ecology issues. The Centre forms a pool of professionals and researchers from the field of hydrology, hydrogeology, hydrochemistry, eco-hydrology and environment management. Besides, the Center has also developed a skill set on community centric water resource development, socio-hydrology and watershed based sustainable management. The Center aims to address real challenges faced by the stakeholders and also provides a platform for science and technology-based solutions through non-invasive investigation, water quality analysis, recycling of waste water, surface and Ground Water flow and resource analysis, satellite databased interpretation, local and regional scale hydro-statigraphic analysis, mathematical modeling of water resources and GIS based applications.

MRCAWTM is having five field units, one each at Barmer, Ballabhgarh, Khol-Rewari, Palwal and Panchkula where 2-10 field specialists are working. MRCAWTM in its short period of journey, has been able to achieve significant milestones in the form of projects obtained, executed, and completed. So far 16 projects have been successfully completed between June 2018 and June 2023 of worth ~Rs2.63 Cr. Further, 07 more projects of Rs 12.34 Cr are in progress as on 1st July 2023.

MRCAWTM is working for its vision of **clean water for all forever.** The major area of work is divided into 1. R&D Studies, 2. **Technical Interventions, 3. Training and Capacity Building**, 4. **Outreach programs**, 5. Product and Innovation. The Center has also established linkage with various Governmental, academic, and non-Governmental agencies through MoUs.

Ongoing Projects of MRCAWTM, MRIIRS leading to Off-Campus Water Conservation Support

Sn.	Ongoing Projects of MRCAWTM, MRIIRS	Funding Agency	From Date & Period	Objective
1	Co-solving Water logging and Groundwater depletion issue in parts of Faridabad Smart City	WTI, DST, GOI	21 .05. 21 36 months	DST Project on solution to flash flood and groundwater (GW) depletion
2	Hydro Geological Survey for Aquifer Monitoring in Barmer Area, Rajasthan,	Cairn Oil & Gas Vedanta Ltd	02.07.21 36 months	Industrial project on impact study on GW use
3	Haryana Atal Bhujal Yojna- Cluster 06 (Faridabad-Rewari Districts)	IWRD Haryana	11.8.2021 48 months	Haryana Govt Project on improving sustainability of GW through participatory approach
4	Haryana Atal Bhujal Yojna- Cluster 07 (Palwal District)	IWRD Haryana	11.8.2021 48 months	at Gram panchayat level in Haryana
5	Haryana Jal Jeevan Mission – State Implementation Support Agency (SISA)	PHED Haryana	27.09.2021 24 months	Haryana Govt Project on assured household water supply in rural Haryana
6	Haryana Jal Jeevan Mission – Energy Audit State Implementation Support Agency	PHED Haryana	01.11.2022 12 months	Haryana Govt project on auditing energy consumption for GW abstraction
7	Groundwater condition study in core and buffer zone of proposed Iron ore mine around Villages, Eklama, District Kabirdham, CG	WCS Bhubaneswar	01.07.2023 04 months	Impact assessment of mining on GW for NOC under CGWA accreditation.

Completed Projects of MRCAWTM MRIIRS leading to Off-Campus Water Conservation Support

S.N.	Completed Projects of MRCAWTM till year 2022	Funding Agency	Sanction Amount Rs in lakh	Completion Date & Period
1	Technical guidance in construction of Rainwater Harvesting Structures in Faridabad City	M/s Navjoti Foundation, Gurugram	29.03.2023	Rainwater conservation
2	Impact assessment of mining of Iron ore on Ground Water in and around Raikela Sundargarh Odisha.	M/s WCS Bhubaneshwar, Odissa	08.10.2022 04 months	Impact assessment of Mining on Ground Water
3	Impact assessment of mining of Iron ore on Ground Water in and around Dholta Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 08 months	Impact assessment of Mining on Ground Water
4	Impact assessment of mining of Iron ore on Ground Water in and around Netrabandh Pahar, Sundergarh,	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Impact assessment of Mining on Ground Water
5	Study for Rainwater harvesting around Iron oremine of Dholta Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Rainwater harvesting in Miningarea
6	Study for Rainwater harvesting around Iron oremine of Netrabandh Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Rainwater harvesting in Miningarea
7	Biodiversity study around Iron ore mine of DholtaPahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Biodiversity in Mining area
8	Biodiversity study around Iron ore mine of Netrabandh Pahar Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Biodiversity in Mining area
9	Impact assessment of underground mining of Manganese on Ground Water in and around Miragpur, MP.	M/s D P Rai, BalaghatMP	April 2022 3 months	Impact assessment of Mining on Ground Water
10	Impact assessment of underground mining of Manganese on Ground Water in and around Pandarwani, MP.	M/s D P Rai, BalaghatMP	April 2022 3 months	Impact assessment of Mining on Ground Water
11	Hydro Geological Survey for Aquifer Monitoring in Barmer Area, Rajasthan (2018-21).	Cairns O&G Vedanta Ltd	June 2021 36 months	Industrial project on impact study on Ground Water use
12	Communicating Science through Model Waterand Eco-Health Clinic for quality of life.	NCSTC, DST, GOI	May 2020 15 months	Water literacy through hands on experiments for students
13	USAID URBAN WASH Innovation Lab,	USAID-NIUA	Dec 2019 30 months	Awareness on water and sanitation
14	Detailed investigations in Khoh Village for Rainwater Harvesting,	MSF, Gurgaon	April, 2019 3months	Sustainable solutions of groundwater use
15	ISP system for treating saline Groundwater- Techno-Commercial, abandoned due to Changein policy of State of Haryana on saline water use	Maharani Innovative Paints Pvt Ltd. Prithla	Sept 2020 12 months	Use of saline water through eco- friendlytechnology
16	Reconnaissance survey for Water prospect in 10adopted villages of Maruti- Suzuki Foundation	MSF, Gurgaon	Dec 2018	Sustainable solutions of groundwater use

Sample Reports

of the Projects detailing the Off Campus Water Conservation Support provided by MRIIRS through the projects mentioned on page no. 3 and 4.

- 1. Co-Solving of Water Logging and Depletion Of Ground Water in District Faridabad- Click to view
- 2. Impact assessment of mining of Iron ore on Ground Water in and around Raikela Sundargarh Odisha - Click to view
- 3. Impact assessment of mining of Iron ore on Ground Water in & around Dholta Pahar, Sundergarh, Odissa- Click to view
- 4. Impact assessment of mining of Iron ore on Ground Water in and around Netrabandh Pahar, Sundergarh- Click to view
- 5. Study for Rainwater harvesting around Iron ore mine of Dholta Pahar, Sundergarh, Odissa- Click to view
- 6. Study for Rainwater harvesting around Iron ore mine of Netrabandh Pahar, Sundergarh, Odissa- Click to view
- 7. Impact assessment of underground mining of Manganese on Ground Water in and around Miragpur, MP- Click to view
- 8. Impact assessment of underground mining of Manganese on Ground Water in and around Pandarwani, MP- Click to view

1. Co-Solving of Water Logging and Depletion Of Ground Water in District Faridabad

MRIIRS with the funding of Department of Science and Technology, Government of India, has created rainwater recharge structure at **Sector 16 A and Sector 15 A Faridabad, Haryana, India** for **water co-solving logging and groundwater depletion** as a pilot project and with the hope to replicate it in entire city area.

As evidence in support to 6.5.3 **details of the project, photographs and video of constructed structure to solve the water logging problem is available. Feedback of local resident about the effectiveness of structure** is presented, All the data are available in public domain through, newspaper & web site of MRIIRS.

 ✓ Video of Construction of Structures for Co-solving of Water Logging and Ground Water Depletion Issues in Sector 15A of Faridabad City of Haryana State of India:

Video of interview of one of the residents of Sector 15A of Faridabad
 City of Haryana State of India:

• Introduction

Urban waterlogging and groundwater depletion are two diverse but major challengesof Indian cities under changing climatic conditions. The enhanced extreme events of rainfall in recent years along with rapidly altered hydrological conditions in urban environment pose conducive situation for urban water logging. On the other hand, intense and large withdrawal of groundwater, higher than the natural annual recharge has depleted the groundwater level severely in many Indian cities. A pilot project is executed in Faridabad Smart City of National Capital Region India, to combat water logging and to rejuvenate groundwater resource.

In the study all steps were undertaken meticulously, beginning from hydrogeological study, site selection, rainfall analysis, calculations of runoff generation, framing well design after identification of suitable recharge zones within depleted aquifer and determination of its intake capacity. It further elucidates estimation of suitable dimension of desilting chamber, fixing suitable dose of ferric chloride for coagulation and assessment of recharge volume. The constructed recharge system is tested whether it is working effectively as per the feedback obtained from independent sources. It has high scalability in similar hydrogeological situation in other parts of India.

Picture of Actual Waterlogging in the Officer's Colony Area of Sec-15A, Faridabad City of Haryana State of India

• Details of Project:

The project of 36 months duration with 0.7012 crore budget, submitted with the title "Co-solving water logging and groundwater depletion issues in parts of Faridabad Smart City using Underground Taming of Flood Water for Aquifer Storage and Recovery" to the Department of Science and Technology, Government of India, got sanctioned to Manav Rachna CAWTM in May 2021.

• Motivation and Problem Statement:

Groundwater over extraction due to urbanization and growing population of Faridabad city of India area has depleted its aquifers. In the recent past, increasing extreme events of rainfall and growing paved area has witness huge waterlogging in low lying parts of city particularly in areas with shallow impervious layers.

Urban waterlogging is a major concern growing fast in India due to an increase in climate-change-related extreme rainfall events. The National Disaster Management Authority has classified urban foods as separate disasters. Urban waterlogging happens in parts of Faridabad Smart City on such a scale that the residents are bound to remain under house arrest for days during heavy pores in monsoons each year. Streets remain submerged under 2-3 feet of water for several hours; transport and movement are totally abandoned. Even if water is removed, mud and dirt persist for several days creating an unhealthy atmosphere and enhancing the risk of waterborne and communicable diseases. A smart solution to a smart city addressing these two critical issues of Faridabad Smart City (FSC) is the need of the hour.

• Under this investigation it was proposed to divert the urban flash flood creating water logging condition and is hampering day-to-day life during monsoon period to improve the groundwater condition within the depleted aquifer. This **aquifer**

storage and recovery project of taming urban flood water is addressing two critical issues of urban hydrology to improve the sustainability.

✓ Developing solutions to the street water logging and groundwater depletion through Underground Taming of Flood water (UTF) for Aquifer Storage Recovery (ASR) in Faridabad Smart City.

- ✓ Identification of suitable aquifer zones for recharge in the Faridabad Smart City
- **Impact Assessment**: Under this sponsored project, MRIIRS with the funding of Department of Science and Technology, Government of India, has created rainwater recharge structure at officer's colony, sector 15A Faridabad, Haryana, India for water co-solving logging and groundwater depletion as a pilot project and with the hope to replicate it in entire city area.
 - ✓ Real time monitoring of groundwater level, temperature, and electrical conductivity for impact assessment on the ground water system.
 - ✓ Periodic monitoring of groundwater quality to assess the impact of Aquifer Storage and Recovery through comparison of the source water and product water.
 - To study the reduction in energy consumption for groundwater pumping due to UTF & ASR
- Two locations were identified under FSC area in sector 16A (PWD, B&R colony) and 15A (Officers' colony) in consultation with FSCL and PWD, Faridabad. Here, streets remain submerged under 2-3 feet of water for several hours; transport and movement are totally abandoned. Even if water is removed, mud and dirt persist for several days creating an unhealthy atmosphere and enhancing the risk of waterborne and communicable diseases.
- The newly constructed systems at Officers Colony, Sector 15A, and B&R Colony Sector 16A Faridabad are working absolutely fine and has been tested during last two monsoons. First during 73mm of rainfall on 30th Aug 2022 and is reconfirmed during last two days wide spread rain of 22nd and 23rd Sept 2022 (110mm in 24hr on 22 Sept 2022, IMD). The system collects water first in a de-siltation chamber through a gutter having a baffle wall to reduce silt load and provide laminar flow transfers to the coagulation chamber by gravity for pretreatment of storm water to reduce suspended particles, the water moves further to filtration cum recharge well by gravity flow. From where the silt-free storm water enters to recharge well and transfer to the vadose zone just above the water table by passing a large dry zone to release water through a slotted casing. The water moves to the aquifer travelling through a small part of the vadose zone. It provides a faster absorption rate and safer discharge of rainwater to the aquifer to co-solve two critical water issues in gainful manner.

- Project Investigators: Dr. Arunangshu Mukherjee (Principal Investigator- PI)
 Dr. Nidhi Didwania (Co- PI)
 Ms. Alifia Ibkar, Research Assistant
- **Capacity Building for Replication:** Capacity building of Urban Local Body (ULB) officials such as Municipal Corporation Faridabad (MCF), Haryana Shehri Vikas Pradhikaran (HUDA) & Faridabad Smart City Limited (FSCL) etc related to Underground Taming of Flood water (UTF) for Aquifer Storage Recovery (ASR).

Faridabad Smart City

MANAV RACHNA INTERNATIONAL INSTITUTE OF RESEACH AND STUDIES, FARIDABAD

during rain

Construction of Structures for Co-solving of Water Logging and Ground Water Depletion Issues in Officer's Colony, Sector 15A of Faridabad City of Haryana State of India

Inspection of site - Officer's Colony, Sector 15A of Faridabad City of Haryana State of India

Constructed Structure at Officer's Colony, Sector 15A of Faridabad City of Haryana State of India

Salient features of the project

- 1. The project is own by MRCAWTM, MRIIRS through Principal Investigator Dr Arunangshu Mukherjee and Co PI Dr Nidhi Didwania
- 2. The total cost of Project is Rs 70.12 lakh
- 3. Duration of project is 36 months and the project started in May 2021
- 4. It is proposed to construct 04 Aquifer Storage and Recovery Structures to cosolve urban water logging and groundwater depletion.
- 5. Locations were identified considering the waterlogging due to near surface impervious layer in the depleted groundwater areas of Faridabad
- 6. The area is having over exploited unconfined to semi confined alluvial aquifer
- 7. In the first phase, two such structures are created in sector 15A and 16A in last two years.
- 8. Catchment area for each structure is about 3.25ha
- 9. The suitable subsurface recharge zone has been identified through drilling, well logging and water quality analysis.
- 10. Each structure has been deigned to absorb maximum up to 2000m3/day rain
- 11. There are three chambers in this structure (i) de-siltation chamber (ii) coagulation chamber and (iii) filtration cum recharge well
- 12. The filtered water is released above groundwater table in vadose zone for further natural filtration for safe disposal of recharge water.
- 13. The structures were tested during the last 2 monsoon period. With about 100mm rainfall in 24 hrs time these structures were able to absorb all generated runoff within few hours.
- 14. Positive impact has been observed on EC concentration of groundwater in the vicinity of created ASR system
- 15. The structures have been constructed in the land of PWD and will be handed over to PWD after completion of the project for further maintenance. Faridabad

MANAV RACHNA Ividyanatanikshai

SDG 6- CLEAN WATER AND SANITATION

Smart City Limited (FSCL)has helped to obtain NOC for the construction of structures in PWD premises.

- 16. Positive Feedback has been recorded from the residents of respective colony area about the working of these structures.
- 17. The success of this pilot project has already created buzz in the area and FMDA (Faridabad Metropolitan Development Authority) shown its keen interest to replicate these systems in about 20 places in Faridabad. A concept note has been submitted by Manav Rachna in this regard.
- 18.NIUA (National Institute of Urban Affair), New Delhi also keen in replicating the project at suitable localities in Delhi –NCR, discussions are in progress.

Fig Actual pictures of site at Sector 16A B&R Faridabad, before and after construction of ARS System and inauguration event.

Fig Comparison EC values of two conjunctive years at Officers colony (blue) and B&R Colony (Orange)

	Media Coverage:		
← → C 🔒	english.jagran.com/india/dc-faridabad-inaugurates-aquifer-storage-and-recovery-structure-cons	tructed-by-m	cawtm-
			top deal:
	B SPECIALS HOME WORLD CUP 2023 ISRAEL-HAMAS WAR LATEST NEWS ENTERTAINMENT LIFESTYLE	SPIRITUAL IND	IA BUS
	DC Faridabad Inaugurates Aquifer Storage And R	ecovery	7
	Structure Constructed By MCAWTM		
	The silt-free stormwater enters to recharge well and transfers to the vadose above the water table by passing a large dry zone to release water through casing.	zone just a slotted	
	By JE News Desk Published: Sun, 09 Jul 2023 03:51 PM (IST) Source-JND		
	F Facebook X Twitter 🖸 Whatsapp Google News		
https://eng and-recover	ish.jagran.com/india/dc-faridabad-inaugurates-aquifer-stc y-structure-constructed-by-mcawtm-10086767	orage-	

https://indiaeducationdiary.in/manav-rachna-launches-acquifer-storagerecovery-structure-in-presence-of-dc-faridabad/#google_vignette

2. Impact assessment of mining of Iron ore on Ground Water in and around Raikela Sundargarh Odisha -

Click to view the relevant page

Comprehensive Report on: Groundwater Condition in both core and buffer zone of Raikela Iron Ore Mining Project of M/s. Geetarani Mohanty Koira Tehsil, Sundargarh District, Odisha.

[Report submitted for renewal of NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/s Geetarani Mohanty House No – 96, Station Road, Keonjhar, Odisha, Pin-758035

geetarani.mines@gmail.com

Comprehensive Report on: Groundwater Condition in both core and buffer zone of Raikela Iron ore Mining Project of M/s. Geetarani Mohanty, KoiraTehsil, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/s Geetarani Mohanty, House No – 96, Station Road, Keonjhar, Odisha, Pin-758035 E-MAIL ID: <u>geetarani.mines@gmail.com</u> By MRCAWTM – November, 2022

Executive summary

Raikela Iron ore Mining Project of M/s. Geetarani Mohanty spread over an area of 67.586 Ha is under operation with the production capacity of Iron Ore @ 0.864 MTPA in village Raikela under Bonai Sub-Division of Sundargarh district was initially executed for a period of 20 years w.e.f. 02.07.1991 in favour of Smt. Geetarani Mohanty.As per the Supplementary lease deed, the validity of the lease period is now extended up to 01.07.2041. The study area falls under survey of Indiatoposheet no F45N1 (73G/1).The existing iron Ore Mining project is in running condition and consent to operate has been obtained from State Pollution Control Board (SPCB) Govt. of Odisha. The Ministry of Environment and Forest has granted the Environmental Clearance for the production capacity of 0.864MTPA capacity vides the letter No-J- 11015/380/2006-IA.II dated 02.07.2008.

The lessee has obtained all the statutory clearances like Mining Plan approval from IBM, Forest and Environment Clearance from MoEF, Consent to Operate from SPCB.

The mine has been developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc.

The present production capacity of the Iron Ore Mine is @ 2.99 MTPA will increase upto 4.99.The present study is made for renewal of NOC from CGWA for extraction of maximum 170KLD of groundwater during mining operation as per the approved mine plan and previous NOC. The present report is based on the Hydrogeological investigation made within core zone and its 10km radius i.e buffer zone for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining NOC. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic. The study area is located in Koira Tehsil of Sundargarh District, Odisha which falls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation name Singbhum-Keonjhar-Bonai group of iron ore of Precambrian age. These constitute hard rock's includes schist, tuffs, phyllite, basic rock, BHQ/BHJ have been classified as Iron Ore Series (IOS). Aquifers are developed only in the low lying area and valley parts of the study area. Groundwater quality is fresh and potable in both core and buffer zone area and EC remains below 1900 ppm and TDS varies from 10 to 310 ppm in the core zone & buffer zone both. As per the approved mine plan the dewatering of groundwater is maximum 170KLD is required for mining operations. Rainwater is harvested within the ML area through construction of water conservation pond, and earth bunds to meet the complete requirement. There is no long term impact on groundwater because the area is under safe zone. For the running of mine 281.30KLD water is required, 170KLD from ground water and 98 KLD will be from RWH and 13.3 from recycle water from ETP& STP. Thus, the study recommends NOC may be provided for next 5 yr with maximum 170 KLD extractions from groundwater.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline is carried out by Manav Rachna Centre for Advance water Technology and Management (MRCAWTM), an accredited Groundwater Institution of CGWA. The work order is provided by **My world consultancy services (WCS), Bhubaneswar.**

Discussions with Mr. Pradeept Mohapatra, Director WCS, regarding the geology of lease area and plan our investigations according to scope of work is gratefully acknowledged. Help rendered by Mr. Pradeept Mohapatra and Diganta Ray, WCS in every stage of planning and Field verification, investigations in and around lease area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records; many of them are reproduced in this report and forms part of annexure section.

The report has been prepared by Ms. ShehaRai, Assistant Professor and Sandeep Kumar Research Assistant, MRCAWTM under the supervision of Prof. (Dr) Arunangshu Mukherjee, Director MRCAWTM.

It is to certify that MRCAWTM have investigated the area of Raikela Iron ore Mining Project of M/s. Geetarani Mohanty, village Raikela of Koira Tehsil of Sundargarh District, Odisha. Based on actual data collected from field, available documents and literature survey done, has prepared the report as per the format of CGWA.

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies

(Deemed to be University under section 3 of the UGC Act, 1956) Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121004

CONTENTS

Executiv	ve summary	
Acknow Sr. NO.	ledgement DESCRIPTION	PAGE NO.
1.	SALIENT FEATURES OF THE PROPOSAL	1
2.	ABOUT THE PROJECT	2-11
	2.1 Land Use Land Cover of surrounding area	05
	2.2 DEM/Topography	07
	2.3 Geomorphology and Drainage	09
	2.4 Details of Wetlands/ Major water Bodies	11
3.	Hydrogeology	11-27
	3.1 Geological Setup	11
	3.2 Hydrogeological Setup	17
4.	Approved Mine Plan	28 - 31
	4.1 Detail Of Approved Mine Plan /Scheme Of Mining	28
	4.2 Mining Method	28
	4.3. Production Details	31
5	Estimation of Mine Seepage and Advanced Dewatering plan	32-33
	5.1 Rain water Accumulation within Open Mine Pit Area	32
	5.2 Estimation of Mine Seepage	33
	5.3 Advance Dewatering Plan in case of Coal/ Lignite Mines	33
	5.4 GW Modelling	33
6	Mine water Management	33
	6.1 Water Requirement	33
7	Impact of Mine Dewatering/ Abstraction and Mitigation Measures	35 - 44
	7.1 Impact on Groundwater Regime	35
	7.2: Impact on Surface Sources	35
	7.3 Impact on Water Quality	37
	7.4 Mitigation Measures	40
	7.5 Saline Water Disposal	44
8	Summery and Conclusion	44

LIST OF TABLES

Sr. No.	Description	Page No.
2.1	Pillar Coordinates of the Lease Boundary	2
2.2	LULC Units Within 10 Km Buffer Zone and Their Spatial Extent	06
2.3	Startigraphy of Koira Group In Sundergarh District, Odisha	14
3.1	Decadal Rainfall in Sundergarh District (Source: Wris Online Portal) 2011-2020	17
3.2	Post Monsoon Monitoring Points in Buffer Zone	17
3.3	Block Wise Dynamic Groundwater Resources of Koira Block, Sundergarh District, Odisha	22
4.1	List of Approved Mine Plans	28
4.2	Jest of Mining Method	29
4.3	Details of Production Plan of Iron Ore (+55%Fe and 45-55%Fe)	31
4.4	Generation Of off Grade Material/Mineral Reject (45 – 55 % Fe)	31
5.1	Depth of Working in Existing Lease Quarries	32
5.2	Ultimate Pit Limit Within Plan Period	32
5.3	Rain Water Accumulation Within the Pit Area	33
6.1	Details Of Water Requirement in Mining Operation	33
7.1	Pre-Monsoon And Post-Monsoon Water Level Within the Lease Area	35
7.2	Protective Measures Around the Mineral Reject Stack	36
7.3	Year Wise Proposal of Retaining Wall, Garland Drain & Settling Pond	39
7.4	Year Wise Proposal of Coir Matting	43

LIST OF FIGURES

Sr. no.	DESCRIPTION	PAGE NO.
2.1	Location Map of Raikela Iron Ore Mine, Sundergarh District, Odisha	4
2.2	Satellite Image of The Project Area	4
2.3	Digital Elevation Model of The Study Area Showing Highest and Lowest Altitudes	8
2.4	Topography Map Including Core Zone and Buffer Zone	8
2.5	Geomorphological Map of The Study Area	9
2.6	Drainage Map of Core Zone and Buffer Zone.	10
2.7	Drainage Map Showing Drainage Basin Area	10
3.1	Schematic Diagram of Stratigraphic Setting of Three BIF of IOSG (Beura Et Al.2016)	13
3.2	Stratigraphic Succession of Iron Ore Super Group of Odisha (Beura Et Al.2016)	14
3.3	Map Showing Location of Groundwater Monitoring	18
3.4	Natural Groundwater Flow Direction's In Buffer Zone	19
3.5	DTW Map of Buffer Zone of Raikela Iron Ore Mines (Pre-Monsoon)	21
3.6	DTW Map of Buffer Zone of Raikela Iron Ore Mines (Post Monsoon	21
3.7	Long Term Well Hydrograph of Wells of Sundergarh District, Odisha (Source: WRIS Portal)	22
3.8	TDS Map of Raikela Iron Ore Mine	23
3.9	EC Map Of 10km of Buffer Zone of Raikela Iron Ore Mines	24
3.10	Sub-Divisions of The Diamond Field	24
3.11	Piper Trilinear Diagram	25
3.12	US Salinity Diagram ,Sundergarh District, Odisha	27
4.1	Flow Chart of Mining Operation	30
6.1	Flowchart For Mine Water Utilization	34
7.1	Retaining Walls and Garland Drain in Mining Area	37
7.2	Quality Report From NABL Accredited Lab For Office Bore-Well In October, 2022	39
7.3	Rainwater Harvesting Pond	40
7.4	Roof Top Rainwater Harvesting in Lease Area	41
7.5	Section Showing Reclamation and Restoration of Mined Out Areas	42
7.6	Post Mining Land Use Plan With Reclamation and Restoration of Mined Out Areas	43
7.7	ETP For Recycle of Water is Established in Lease Area.	43

LIST OF ANNEXURE

Sr.No	Annexure	
1	Copy of Present NOC for Groundwater Abstraction By CGWA	45-46
2	Copy of Accreditation of MRCAWTM, Faridabad	47
3	Work Order Copy to MRCAWTM From Raikela Iron Ore Mines	48-49
4	Water Quality Analysis by NABL Accredited Laboratory	50-55
5	Groundwater Level monitoring data of Pre-monsoon and Post Monsoon in Mining Lease Area	56-67

Report on

Hydrogeological Investigation and Impact Assessment for Raikela Iron ore Mining, village Raikela, KoiraTahasil of Sundergarh District, Odisha.

1.1	Application No	
1.2	Accredited by	CGWA
1.3	Date of Accreditation	01/10/2021
1.4	Validity upto	30/09/26
1.5	Work Order Date (Attach copy of the Work Order	8/10/2022, Attached as
	with masking details of charges)	annexure 3.
1.6	New/ Existing Project	Existing Project
1.7	CTE issued date	19-08-2022
1.8	Alluvium/ Non-alluvium	Non-Alluvium
1.9	Block Name & Category (GWRA, 2020)	Koira Block, Safe category
1.10	Ground water requirement	170KLD
1.11	Date of NOC issued & Authority	31/01/2021, CGWA
1.12	Date of NOC validity	30/01/2023, Annexure 1
1.13	Ground water Modelling Required (Yes/No)	NO
1.14	In case the report is prepared jointly by accredited	NO
	Institute and Individual consultant, name/details of	
	chapters prepared by the Individual consultant	
1.15	Signature of the Consultant(s)	Houng
		(Dr Arunangshu Mukherjee)
		Director, MRCAWTM

1. SALIENT FEATURES OF THE PROPOSAL

2.0 ABOUT THE PROJECT

Raikela Iron ore Mining Project of M/s. Geetarani Mohanty spread over an area of 67.586 Ha is under operation with the production capacity of Iron Ore @ 0.864 MTPA located in Raikela village in Koira Tahasil of Bonai sub-division in Sundergarh district of Odisha. The lessee is a partnership firm. The latest lists of partners areas 1.Sri Srinibash Sahoo, 2.Duhshasan Sahoo, and 3.Smt Suprassana Sahoo. The existing iron Ore Mining projects was executed for a period of 20 years w.e.f. 02.07.1991 in favour of Smt. Geetarani Mohanty and as per the Supplementary lease deed, the validity of the lease period is now extended up to 01.07.2041. The Mine is in running condition and consent to operate has been obtained from State Pollution Control Board (SPCB) Govt. of Odisha. The lessee has applied for enhancing production capacity EC for a capacity of 4.99 MTPA, which is in due process.

Out of the 67.586Ha of Mining Lease area, forest land under DLC category is 66.671Ha and 0.915Ha is non-forest land. Out of the 66.671Ha, DLC Forest land, 43.033Ha had been broken prior to 12.12.1996 and mining operation in this area was being continued. Ministry of Environment and Forest, Govt of India has accorded the Stage-II Forest Clearance over an area of 66.671Ha vide letter No. F No.8-37/2007-FC dated 22.10.2014.

There is no environmental sensitive zone in core and buffer zone. There is no reserve forest in the core zone. However, the reserve forest found in the buffer zone is as follows: Sarkunda R.F - 2.5 Km (South), Tohra R.F - 3.3km (South), Tohra R.F - 5.9km (North), Karo R.F - 9.5km (North-east) Kathmal R.F - 8.2km (East)

The Review of Mining Plan under Rule 17(2) of MCR 2016 was approved vide letter no MRMP/A/05-ORI/BHU/2021-22 dated.01.07.2021 for the production capacity of 4.99 MTPA. The validity of the Review of the Mining plan is up to dt.31.03.2026.

As per the approved mining plan, the mineral processing like screening and crushing will be suggested by deploying mobile screening and crushing plant for future. Now the lessee proposed a fixed 1000TPH Central processing unit (CPU) for screening and crushing of iron ore of required sizes. As a result of installation of CPU the mining operation will be in a systematic and scientific manner.

In present there is no beneficiation proposal. The lessees will directly sale the product in open market. Total mineral reserve is 74455138 T, mineral resource is 13980220 T and total reserve resource is 88435358 T.

NOC for withdrawal of 64.5 m3/day of Ground water has been obtained from CGWA vide ltr no 21-4(83/3ER/CGWA/2008-1723 dt 18.12.2008.

NOC for drawl of 180 m3/day of Ground water has been obtained from CGWA vide ltr no CGWA/NOC/MIN/ORIG/2021/10588 dt 31.01.2021 (Annexure 1). The water requirement will be met from own bore wells situated in the lease area. The area falls under safe category as far as stage of development is concerned.

The mining lease area is approachable from Koira town covering a distance of 8 km by Bhadrasahi – Rourkela NH–215. The area can also be approachable from Tensa town ship which is on NH – 215 at a distance of 2 km. Nearest Rail Head is at Barsuan (both Passenger and goods train) located adjacent to several working mines connected by road from Bhadrasahi-Koira-Rajamunda NH-215. District headquarter is at Sundergarh – 110 km from lease area.

The lease area comes under the toposheet no F45N1 (73 G/1) is delineated between latitude 21° 51' 54.47556'' to 21° 52 35.39676''N and longitude 85° 10'32.27952'' to 85° 11'05.16660''E. List of the co-ordinates of the pillars are shown in table no 2.1.

DGPS SURVEYED CO-ORDINATES OF ML PILLARS					
SL NO	PILLAR	LONGITUDE	LATITUDE	UTM COORD	INATE
SL.NU.	NO.	DD-MM-SS	DD-MM-SS	EASTING	NORTHING
1	1	85°10'43.50432"	21°52'35.39676"	311823.778	2420271.88
2	2	85°10'39.17784"	21°52'29.73648"	311697.506	2420099.257
3	3	85°10'37.58988"	21°52'26.27508"	311650.661	2419993.342
4	4	85°10'38.32032"	21°52'23.63160"	311670.664	241991.785
5	5	85°10'34.63140"	21°52'19.69536"	311563.326	2419791.972
6	6	85°10'32.83140"	21°52'14.74932"	311509.848	2419640.454
7	7	85°10'32.27952"	21°52'10.05348"	311492.283	2419496.223
8	8	85°10'33.52152"	21°52'06.88260"	311526.783	2419398.267
9	9	85°10'34.38336"	21°52'04.17540"	311550.546	2419314.709
10	10	85°10'36.46488"	21°52'02.64468"	311609.746	2419266.922
11	11	85°10'39.38772"	21°51'58.90212"	311692.296	2419150.811
12	12	85°10'41.23128"	21°51'57.16728"	311744.587	2419096.834
13	13	85°10'44.15304"	21°51'54.47556"	311827.492	2419013.045
14	14/1	85°10'45.80220"	21°51'56.04840"	311875.406	2419060.887
15	14/2	85°10'53.13144"	21°52'02.65296"	312088.239	2419261.509
16	14/3	85°10'54.26796"	21°52'03.72828"	312121.256	2419294.194
17	14/4	85°10'57.69120"	21°52'07.64724"	312220.964	2419413.570
18	14/5	85°10'58.70136"	21°52'08.72364"	312250.350	2419446.339
19	14/6	85°11'01.76964"	21°52'11.13960"	321339.315	2419519.603
20	14/7	85°11'05.16660"	21°52'14.84508"	312438.184	2419632.414
21	15	85°11'03.56748"	21°52'13.55592"	312391.814	2419593.315
22	16	85°11'02.36508"	21°52'13.99512"	312357.453	2419607.226
23	17	85°11'01.46004"	21°52'14.17908"	312331.528	2419613.191
24	18	85°11'01.24008"	21°52'14.68596"	312325.402	2419628.856
25	19	85°11'04.52400"	21°52'19.85520"	312421.555	2419786.728
26	20	85°11'03.56640"	21°52'20.56224"	312394.325	2419808.807
27	20/1	85°10'58.73592"	21°52'24.30696"	312257.012	2419925.620
28	21	85°10'54.24600"	21°52'27.80904"	312129.385	2420034.856
29	22	85°10'49.64196"	21°52'31.53756"	311998.567	2420151.094

Table-2.1: Pallor coordinates of the lease boundary

Location:

Raikela Iron ore Mining Project of M/s. Geetarani Mohanty spread over an area of 67.586 Ha is under operation, located in Raikela village in Koira Tahasil of Bonai sub-division in Sundergarh district of Odisha. Location Map and Satellite Image of the Project area is shown in Figure no.2.1 &2.2.

The mining lease area is approachable from Koira town covering a distance of 8 km by Bhadrasahi – Rourkela NH–215. Tensa Township by NH – 215 at a distance of 2 km. Nearest Railway station is at Barsuan (both Passenger and goods train) located adjacent to several working mines connected by road from Bhadrasahi-Koira-Rajamunda NH-215. District headquarters is at Sundergarh – 110 km from lease area.

Fig-2.1. Location Map of Raikela Iron ore mine, Sundergarh district, Odisha

Fig-2.2. Satellite Image of the Project area

2.1Land Use Land Cover of surrounding area

"Land use" is the term used to describe the human use of land. It represents the economic and cultural activities (e.g., agricultural, residential, industrial, mining, and recreational uses) that are practiced at a given place. Land use and land management practices have a major impact on natural resources including water, soil, nutrients, plants and animals. Land use information can be used to develop solutions for natural resource management issues. The major effect of land use on land cover is deforestation more recent significant effects of land use include urban sprawl, soil erosion, soil degradation, salinization, and desertification. Land-use change, together with use of fossil fuels, is the major anthropogenic sources of carbon dioxide, a dominant greenhouse gas. In the present study, land use and land cover within 10Km buffer area covering area is 347.16 sq.km, using remote sensing satellite data and LULC within the Core Zone (CZ) has been carried out for obtaining environmental clearance for Iron ore mining lease (66.587 Ha) of M/s Geetarani Mohanty near Raikela village of Sundargarh district, Odisha. 3.4.3.1 Terrain Description of the study area. The study area is mostly an undulating rugged mountain terrain except a relatively flat and gently undulating terrain in the northwestern part. The hills are trending from northeast to southwest. Most of the terrain is covered with forest ranging from dense through open and degraded forest cover. The rugged terrain has the highest elevation range of approximately 1000m above MSL and 400m above MSL as the lowest elevation. Plains are also seen, which are narrow and very small in spatial extent. Such places are inhabited with settlements that are scattered in nature and seasonal agricultural activities are seen. There are many first order nallas are seen in the hilly area which act as overland flow of precipitation. These seasonal nallas join to form minor streams and later confluence with major rivers. There are two major nallas flowing in the study area are Kuradhi Nadi, Karo river and Sarkanda nalla with former flowing in the northeast and latter in southwest direction. Villages are scattered and seen along the foothills and along the narrow valleys between the hills. Because of the natural constraints on land availability and lack of proper storage mechanism for water, only seasonal agriculture cropping is practiced in this area.

2.1.1 LULC Pattern within 10 Km Radial Buffer around the ML

Map showing various LULC categories is prepared using visual interpretation technique based on image elements such as spectral band width colour, tone, texture, size, shape and association of elements. Categorization of LULC and their nomenclature is based on the national level land use classification system, which is adopted for the entire country as recommended by National Remote Sensing Centre (NRSC), Department of Space, and Government of India. Also as mentioned in the previous section, LULC , LISS IV image thus prepared for 10 Km radial buffer of the ML area is finalized after carrying out limited field checks for accuracy of classification. Post field visit of the study area includes incorporation of necessary corrections and modification of boundary elements wherever required. The geo-referenced LULC map in GIS environment has the advantage of updating information temporally to locate changes around specific locations and features within the study area apart from acting as base reference for periodical monitoring for EIA studies

Sl.No	Major LULC Category	Land use unit
1.	Built-up Land Settlement	Industries / Mining, Infrastructures
2.	Agricultural Land Crop land	Plantation
3.	Forest Dense Forest	Open Forest, Scrub Forest
4.	Waste Land Land with Scrub	Land without scrub
5.	Water bodies Tanks / Ponds	Rivers / Streams

LULC map showing 10 Km radial buffer around the mining lease (ML) area and major LULC categories such as built-up, agriculture, forest, and wasteland and water bodies along with their spatial estimation are discussed below. Settlements: About 18.06 km2 is under habitation comprising villages, settlements. Since, the buffer area is mostly a rugged mountainous terrain, habitation settlements - villages - are numerous, small in size and scattered in nature. From the satellite image, built-up / settlements are identified by their typical image elements such as light grayish green color, medium to coarse tone, medium to coarse texture and close association with vegetative cover (red color). They are small and scattered in nature and there is one larger settlement Koida town in the study area. There are some mining related industrial activities in the buffer area apart from some infrastructure buildings such as temporary shelters - camps and schools). Agricultural Land Agricultural land covers of 55.65 Sq.km. Cultivation is seasonal, Kharif crops, are grown along with maize, pulses like Ragi, Mango, Biri are grown to substantiate the household requirements and provide some form of earning to the local people. Owing to mountainous terrain, cultivation practice is limited and restricted to a few pockets in the study area. Plantation Area is very meagre with presence of teak, mango, neem trees occupying an area of 0.24 Sq.km of the buffer area. Forest is the major land cover in the study area and most of the area is covered with forest of varying density covered with deciduous trees, shrubs and scrubs with trees such as Sal, Sidha, Mahula, kendu Champa. Based on the image elements such as colour, tone and textural variations, forest is delineated qualitatively as "dense forest", "open forest" and "scrub forest" cover. Cumulatively, LULC of forest category covers an area of 203.92 Sq.km of the study are.

Wasteland is another important LULC where land lie unproductive in terms of agricultural activity even after sustained conservation practices but could be used for other land utilization or land use such industrial activities and mining activities. Some of the category that comes under this LULC is "land with scrub", "land without scrub". The total wasteland is 43.42sq km. Water bodies Water bodies include features such as tanks, ponds, streams and rivers. This is an important LULC that indicates the terrain condition and agricultural resource of an area. There are many ponds and tanks

existing near settlements. They are identified by their typical blue colour. The water bodies cover 1.59sq km.

Sl No	Landuse Category	Area In Sq.Km
1	Settlement	4.66
2	Road	0.19
3	Railway	0.33
4	Mining / Industries	12.88
5	Agricultural land	55.43
6	Land with Scrub	24.49
7	Land without Scrub	43.42
8	Dense Forest	116.31
9	Open Forest	73.63
10	Scrub Forest	13.99
11	Plantation	0.24
12	River / Stream	1.44
13	Reservoir / Tank / Pond	0.15
	Total Area	347.16

Table-2.2: LULC units within 10 Km Buffer zone and their Spatial Extent

2.1.2 LULC Pattern within core zone

Total ML area covers 67.586Ha. Out of the 67.586Ha of Mining Lease area, forest land under DLC category is 66.671Ha and 0.915Ha is non-forest land. Out of the 66.671Ha, DLC Forest land, 43.033 Ha had been broken prior to 12.12.1996 and mining operation in this area was being continued. In present, during mining land use pattern is given in table 2.3.

Table-2.3: A Present	Land use	of the M	L area
----------------------	----------	----------	--------

Sl No	Patternofutilization	Area put on use at start of Plan period (Ha)
1	Mining	33.593
2	Overburden dump	2.000
3	Mineral storage	3.799
4	Infrastructure	0.200
5	Road	1.900
6	Mineralseparationplant	0
7	Greenbelt	2.477
Subtotal		43.054
8	Safetyzone	2.523
9	Area undisturbed	21.094
Total	-	67.586
2.2 DEM / TOPOGRAPHY

M/s Geetarani Mohanty Raikela iron ore mine of over an area of 67.586 hectares is located in village Raikela, PO-Tensa in the district of Sundergarh of Odisha state. The area contains both forest and non-forest land. Out of total lease area, 66.671 ha come in forest land which is falls under in "DLC Forest" and rest 0.915 ha area is under non-forest area. The mining lease area is approachable from Koira town covering a distance of 8 km by Bhadrasahi – Rourkela NH – 215. The leasehold area falls under Survey of India Toposheet No. 73 G/1 and is delineated between latitude 21^0 51' 54.47556'' to 21^0 52 35.39676'' N and longitude 85^0 10'32.27952'' to 85^0 11'05.16660'' E.Topography map including core zone and Buffer Zone is shown in Fig-3.4.

The lease area presents an undulating topography. The highest and lowest elevation is 845m and 625m above M.S.L. respectively. Digital elevation map of the area is showing in Fig-2.3.

Fig-2.3: Digital Elevation Model of the Study area showing highest and lowest altitudes

Fig-2.4:. Topography map including core zone and Buffer Zone

2.3 GEOMORPHOLOGY AND DRAINAGE

As far as drainage pattern is concerned, dendritic pattern can be observed regionally in the lease area and its surrounding area. There is no perennial nala flowing within the lease area. Only some seasonal nala flowing due east along the valley. The KurahiNadi is flowing due North West in the western part of the lease area at a distance of 8km. Geomorphological map of the buffer zone is shown in fig-2.5.

Drainage system of the area is dendritic type controlled river Baitarani (outside the buffer zone) andits tributaries like Kuarhi Nadi, Marda Nadi, Burghar Nadi, Kiri Nadi etc. Kuarhi Nala a perennial source, starting near village Basada, drains the north-western part of the buffer zone similarly, southeastern and southwestern part of the buffer zone is drained by MardaNadi and Burgharnadi respectively. Drainage density is very high indicating the hilly nature of the land-form.

The rainfall runoff is generated through drainage of different orders, which flows in general from northwest towards south-east. Besides there are other prominent seasonal nallas, the whole area dendritic drainage pattern can be observed that generally follows physiography as shown in Drainage map (Fig. 2.6). Vegetation is sparse with deep-rooted trees at number of places especially along the nallas. The area has deciduous forest which spread over hills. The area comes within Micro-watershed of sub basin is given in fig 2.7.

Fig-2.5:. Geomorphological Map of the study area

Fig-2.6:. Drainage map of core Zone and buffer Zone

Fig-2.7:. Drainage Map showing drainage basin area

2.4 DETAILS OF WETLANDS/ MAJOR WATER BODIES

The drainage pattern is dendritic generally but since the region is fracture controlled, trellis pattern is also observed. The drainage density is moderately high indicating more run-off than infiltration. The drainage system is predominately controlled by Karo River flowing at a distance of 7km in North eastern side and Kurahi Nadi, flowing due North West in the western part of the lease area at a distance of 8km. Similarly, Sarkunda Nala flowing at a distance of 4.20 km in the southern side joins Kuradi Nadi at a distance of 5.0 km in the southwestern direction. Drainage density is moderate indicating the hilly nature of the land-form. The slope is generally towards west and southwest. The drainage map of the study area is shown in Fig- 2.6.

3. HYDROGEOLOGY

Sundergarh district is North Western part of Odisha state. Sundargarh is recognized as an industrial district in the map of Odisha. Steel Plant, Fertilizer Plant, Cement factory, Ferro Vanadium Plant, are some of the major industries of this District.Large part of the study area belongs to Raikela Village, Koira Tehsil of Sundargarh District, Odisha. Ground water is the main source of drinking as well as industrial and domestic purpose. However, the requirement of water in irrigation and agriculture is

fulfilled mainly by river, canals as well as by rainwater. The rainwater also is the main source for recharge of groundwater of the area. The following major subtopics that are covered in this particular chapter are:

- 3.1 GEOLOGICAL SETUP
- 3.2 HYDROGEOLOGICAL SETUP
- 3.2.1Aquifer characteristics
- 3.2.2 Groundwater flow & aquifer interaction with surface water bodies.
- 3.2.3. Depth of water level
- 3.2.4Long term water- level data analysis
- 3.2.5 Groundwater quality

3.1GEOLOGICAL SETUP

3.1.1. Regional Geology

Sundergarh district is rich in Iron ore, limestone, manganese, dolomite, and fire clay. Banded Iron Formation (BIF) and Iron ore deposit occupy three distinct provinces surrounding the North Odisha Iron Ore Craton (NOIOC). They are Bonai-Keonjhar belt in the western side of the Craton, Badampahar Gorumahisani- Suleipat belt in the eastern flank and Daitari-Tomka belt in the southern side of the Craton. All of these three belts having best preserved basin of Precambrian age that form Iron Ore Super Group (IOSG) of Odisha. Sundergarh district lies under Western flank by the Bonai – Keonjhar (BK) belt forming U shaped synclinorium which is known as the Horseshoe belt. Iron Ore Super Group (IOSG) Odisha, rock assemblages is belonging to Singhbhum – North Odisha Iron Ore Craton. There are three or more Iron Ore Group existing in the IOSG such as Badampahar Group, Noamundi Group and Koira Group. These groups are separated by unconformity, different metamorphic grade, distinct sedimentary and igneous assemblages and ore types (Fig: 2.1).

The Mayurbhanj granite occurring along the eastern fringe of the Singhbhum granite was dated to be 3100Ma. The A type Mayurbhanj Granite Pluton (3.09Ga) occurring along the eastern margin of the Singhbhum – OdishaCraton, eastern India, represent the final phase of acid plutonism in this crustal block of Archaean age.

I. BIF-1: Badampahar – Gorumahisani – Sulpet Belt

The BIF-1 comprising of iron formation of Badampahar- Gorumahisani – Sulpet (BGS) Belt. The litho assemblage of this oldest Iron Ore Group consists of banded cherty quartzite, tremolite-actinolite schist and fuchsite quartzite. The Badam Quartzite is well exposed in the western side of BGS. Banded magnetite quartzite is the dominant litho unit in the BIF-1. The major mineral

constituents are Magnetite, martite, hematite, specularite, goethite, grunerite, and quartz. The BIF-1 has suffered amphibolitesfacies of metamorphism.

II. BIF – II: Daitari- Tomka Belt

The BIF-II lying in the southern portion of the North Odisha Iron Ore Craton is confirmed to Daitari – Tomka belt. It is underlain and overlain by Badampahar quartzite and Dhanjori quartzite. The litho assemblage of this belt consists of banded magnetite/hematite quartzite, banded magnetite/hematite jasper, quartz sericite schist, phyllite, slate and banded chert. The rocks of BIF –II attain green schist facies of metamorphism.

III. BIF – III: Bonai- Keonjhar Belt:

BIF-III is a U- shaped pattern in the western flank of the NOIOC that rests over the Dhanjori Quartzite. The litho association of this area forms the youngest Iron Ore Group comprising of banded hematite jasper, banded hematite quartz/cherty, banded shale, banded manganese formation and ferruginous shale. The banded iron formation consists of predominantly iron oxide mineral such as hematite, martite, specularite, and magnetite. The litho assemblage of this youngest iron ore belt is unmetamorphosed and lack of intrusive Fig (3.1).

Fig -3.1: Schematic diagram of stratigraphic setting of three BIF of IOSG (Beura et al.2016)

Bonai-Keonjhar Group (BIF-III)	Upper Fe- Shale ba	shale nded shales
	1	
	BIF-III ar	anded Hematite Chert/Jasper nd banded hematite shale
	Lower Ba Shale Ba Var	nded shale nded Manganese Formations (B Mn F) riegated shales
U		fs & Tuffaceous shale
Dhanjori Group	Dhanjori Vo Dhanjori Q	uartzite
U	n conformity	
Daitari-Tomka Group	Upper Metapelites	Phyllites Slate Fe-Phyllites
	BIF-II	Banded Chert Banded Magnetite/Hematite Chert/Jasper and Banded Magnetite/Hematite Quartzite
	Lower Metapelites	Banded Phyllites Quartz Schist Chlorite schist
Badamphar-	Upper Quartzite	Badam Quartzite Micaceous Quartzite
Suleipat Group	BIF-I	Banded Magnetite/Martite Quartzite Banded Magnetite/Grunerite Quartzite
	Lower Quartzite	Banded black and green chert Tremolite-actinolite schist Fuchsite Quartzite
	-Non-conformity	/
	Singhbhum Gr (olderto BIF- Tonalite gneis OMG (Mica s Hornblende-s	anite≅Keonjhar granite ≅Bonai granite) I) s (OMTG) ;chist, fuchsite quartzite, Para-amphibolite, chist etc.)
	Dhanjori Group Daitari-Tomka Group Badamphar- Gorumahisani- Suleipat Group	Shale Bar Var Tuf Ohanjori Group Dhanjori Vo Dhanjori Q Dhanjori Q

Fig 3.2: Stratigraphic Succession of Iron Ore Super Group of Odisha (Beuraet al.2016).

3.1.2. Local Geology

The study area is occupied by the rock of Koira group Table (2.1). This belt is 60km long and 25 km wide extending from south of Malangtoli in Keonjhar district up to Chakra Dhrampurin West Singhbhum district (Jharkhand). The western syncline known as Koira syncline, due to steep dip and overturned nature of its limb form a deeper basin with thick sequence of younger shales in the core region. On the other hand, the eastern syncline known as Bamberi syncline is a shallower basin and exposes younger litho members within the core region as outliers. The Upper shale unit within the Koira syncline is more or less continuous. The general strike of the beddings in N100W- S100E direction with occasional swings to N300E-S300W and having 20° - 40° dip towards west in the area. The area under investigation lies within the Upper Shale Formation of the Koira group described by Murthy & Acharya (19975)

Table 2.3: Startigraphy of Koira Group in Sundergarh district, Odisha							
Soil Laterite							
Koira	Upper	Shale	Shale's of different color like purple, yellow with				
Grou	Formation		inter beds of Iron ore				
n	Banded	Iron	Coarsely banded BHJ followed up by finely banded				
P	Formation		BHJ and iron ore in the eastern block.				

M/s Geetarani-Mohanty-Raikela iron ore mine is belonging to Singhbhum iron ore series and main rock type in the study area are Laterite, Hematite, and Shale. Geologically, the area is underlain by Pre – Cambrian crystalline rocks like Granite, Granitic Gneiss, Banded Hematite Jasper, Quartzite, Slate, Phyllite, and Mica Schist.

Laterite

Laterites are observed in the study area including ML area that has been the resulted from a process of residual weathering. Laterite has been developed mostly over the shale unit or low grade iron ores of the area. The shale rich in alumina has given rise to aluminous laterite and those rich in iron have developed ferruginous laterites. Ferruginous laterite occupies most of the high lands in the vicinity of iron ore of central ridge while aluminous laterite occurs in the extreme east of the area.

Shale

Western side study area has occupied with fine laminated rock having different shades of colors ranging from brownish to purple grey. Different colors of the Shale are largely dependent of minerals compositions. It is mostly composed of clayey micaceous minerals, with lenses of chert.

Iron Ore

Iron ore formation are economically important meta sedimentary rocks that occur most commonly in Precambrain sedimentary succession Based on surface exposures and sub-surface geology 4 (four) types of iron ore are recorded in the explored block. (Fig 2.1). These are Hard Laminated Ore (HLO), Soft Laminated Ore (SLO), blue dust (powdery ore), lateritic ore and float ores. The general strike of the beddings in N100W- S100Edirection with occasional swing to N300E-S300W, having $20^{\circ} - 40^{\circ}$ dip towards west in the study area

3.1.3 Geomorphology & Soil Type

Geomorphology: The district has varied geomorphological features. The geomorphic units are (I) Plain (ii)Deep Buried Pediment (iii) Shallow buried pediment (iv) Intermontane valley (v) Inselberg, (vi) Mesa & Butte, (vii) Residual Hills, (viii) Intermontane Valleys, (ix) Structural hills. The soil characteristics of the district show wide variation depending upon their occurrence, physical and chemical properties. The soil of the district is broadly grouped into (I) Alfisols (II) Ultisols (CGWB Report).

I. Alfisol and Red Soil

The study area is covered with red sandy soils and red loamy soils. These soils predominantly occupy high and medium land throughout the Sundargarh district. The characteristics feature of Red soil is porous and fragile in structure. These are usually deficient in nitrogen, phosphate, organic matter and lime. These soils are suitable for cultivation of paddy and other crops.

II. Ultisols

The ultisols comprises mainly of lateritic soils and red and yellow soils. These soils are mildly acidic in nature and deficient in nitrogen, phosphorous and potassium and organic matters. Soils of the district are generally having average to good fertility status. All common types of crops can be grown in the district.

3.2 HYDROGEOLOGICAL SETUP

The climate of the district is sub-tropical climate characterized with hot and dry summer, cold winter and erratic in rainfall. The winter season extends from November to end of February, which is followed by summer season from March to the middle of June, and rainy season from middle of June to middle of October. During summer months the maximum temperature rises up to 43° C and May is the hottest month. December is the coldest month of the year when the average daily temperature drops down to 8° C. Relative humidity is around 60-70% throughout the year. The highest and lowest monthly mean relative humidity so far recorded is 97% (Dec) and 26% (April). The annual rainfall of last decade is given in Table 2.2.

Table	Table 3.1Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020								
Year	Actual Rainfall (mm)	Deviation (%)	Year	Actual Rainfall (mm)	Deviation (%)	Average Rainfall (mm)			
2011	1788.35	20.87	2016	1098.51	-28.82				
2012	1435.18	1.39	2017	1323.91	-6.8				
2013	1537.77	7.97	2018	1396.59	-1.32	1415.126			
2014	1335.09	-5.99	2019	1387.02	-2.02				
2015	1286.6	-9.9	2020	1562.24	9.4				

3.2.1Aquifer Characteristics

The study area comprises 10km radius zone in Raikela iron ore Mines, located in Koira Tehsil of Sundargarh district of Odisha.Detailed hydrogeological study of both core and buffer zone of mine area is carried out.The hydrogeological condition varied from place to place due to different litho unit of aquifer.The hydrogeological units of the study area are broadly categorized into twogroups namely.

- 1. Consolidated formations.
- 2. Unconsolidated formations
- 3. Semi-consolidated

1. Consolidated formations

The study areais occupied by the consolidated formations comprising of Precambrian metasediments of Gangpur series and Iron ore series and also granite gneiss, metasediments like amphibolite, epidiorite etc. Ground water is stored mainly in the secondary porosity resulting from weathering and fracturing of the rocks. Ground water occurs under confined to semi-confined condition in the deeper fractured zones. Wateryielding capacity is mainly depend on the extent of fracture, depth, opening and size of fracture. Mica schist, quartzite and phyllite are the formation in the study area.

- 2. Unconsolidated formations- Unconsolidated sand and gravel aquifers are characterized by intergranular porosity and all contain water primarily under unconfined, or water-table, conditions. They are grouped into four categories: basin-fill, blanket sand and gravel, glacial-deposit, and stream-valley aquifers. All four types have intergranular porosity, and all contain water primarily under unconfined or water-table conditions. The hydraulic conductivity of the aquifers is variable, depending on the sorting of aquifer materials and the amount of silt and clay present, but generally it is high. Aquifer thickness ranges from a few meters or tens of meters. Groundwater in these aquifers flows along relatively short flow paths typical of local flow systems.
- **3.** Semiconsolidated aquifers consist of semiconsolidated sand interbedded with silt, clay, and minor carbonate rocks. Porosity is intergranular, and hydraulic conductivity is moderate to high.

Fig-3.3: Map showing Location of groundwater Monitoring

3.2.2 Ground water flow and aquifer interaction with surface water bodies

As per the field investigation it has been observed that the main source of water is from River and groundwater. Groundwater is withdrawal from bore well as well as from hand pump (Fig-2.4). Most of dug well having water level from 3.7 to 7.5m in pre monsoon period. Total depth of dug well is from 9 to 12m. It has been observed that the bore wells are often from 16 to 30m in depth. Ground water is lying in weathered part of hard rock aquifer (2.5). Hard rock comprises Precambrian met sediments like Mica schist, quartzite, phyllite, conglomerate along with granite. The movement of the ground water in deeper rocks is controlled by the nature, size opening and continuity of joints & fracture present in them. Wells in hard rock generally yield 50 to 70 m3 /day of all the rock types. Schist, phyllite and their variants form very poor aquifers yielding 10 to 30 m3 /day for heavy drawdown. Well inventory of study area (Fig:2.5) in Pre Monsoon (April 2022) period showing ground water level varies within the range from 3.7 m to 36.3m bgl (Table 2.3). In Post Monsoon water level rises up to 2-3m and some places it is 5m.

Fig3.4: Natural groundwater flow Direction's in Buffer Zone

3.2.3 Depth of water Level

Various location points have been selected for groundwater data collection in Buffer zone and core zone, some points from outside of the boundary were also taken for clear picture and modelling purpose. The details of quality and water level are given below.

SI No.	Location	Latitude	Longitude	Elevation (m)	EC (mS)	рН	TDS(pp t)	Water Level (m)	Type of water body
1	Barsuan	21.885964	85.304356	622.85	130	6.8	70	22	Dug well
2	Belkudar	21.886949	85.304342	623.11	120	6.8	60	16.5	Bore well
3	Bhatuda	21.881586	85.314718	614.34	240	6.7	130	8	Hand pump
4	Bhatuda	21.879735	85.314745	623.34	480	6.9	225	7	Hand pump
5	Comanado Steel Plant	21.87555	85.308419	617.73				8	Pond
6	Comanado Steel Plant	21.875081	85.308162	623.8	100	6.4	50	8.5	Bore well
7	Dengura	21.863644	85.293346	664.9				8	Pond
8	Karketasai	21.904283	85.305595	608.55	90	6.5	50	22	Hand pump
9	Kashira	21.904144	85.305645	607.9	95	6.5	45		Hand pump
10	Koira	21.952008	85.320045	567.21	450	7.2	220	8	Bore well
11	Koira	21.963844	85.317	577				5	Mine pit
12	Koira	21.950576	85.255734	562.95	40	7.6	20	22	Bore well
13	Koira, near bus stand	21.93019	85.251827	565.3	40	6.5	20	25	Hand pump
14	Koira, near Police Station	21.917759	85.2543	568.87	65	6.5	25	5	Hand pump
15	New Colony	21.871817	85.188111	611				4	Bore well
16	Panchayat Office Saskela	21.913434	85.224078	559.84	60	6.5	25	25	Hand pump
17	Radhe Krishna Mandir	21.886959	85.274977	646.48	340	6.9	180	22	Hand pump
18	Radhe Krishna Mandir	21.901799	85.257257	581.28	85	6.9	40	18	Hand pump
19	Rainkela	21.895306	85.240408	588.94	70	6.6	30	25	Hand pump
20	Rainkela Iron ore Mines	21.86858	85.17598	680	190	6.57	113	10	Borewell
21	Rengalbeda	21.868889	85.187991	619.85	20	5.9	10	surface	
22	Tumsa Zero	21.838361	85.336098	865.3	210	7.03	120	11	Hand pump
23	Salkunda	21.819241	85.153618	449.78	340	6.7	170	8	Hand pump
24	Salkunda	21.818068	85.153606	431.39	260	6.7	140	7.5	Bore well
25	Saskela	21.878866	85.314424	591.85	110	6.6	60	12	Hand pump
26	A1	21.84094	85.34045	867.2					Pond
27	A2	21.868772	85.10608	370.59	300	7.1	160	27.27	Bore well
28	A3	21.854939	85.111915	373.46	290	6.7	150		Hand pump
29	A4	21.846799	85.115667	379.11	190	6.9	100		Hand Pump
30	A5	21.876188	85.196579	572.02					Pond
31	A6	21.878495	85.197651	571.44	20	6.3	10	surface	
32	A7	21.909329	85.235269	574.88	20	6.4	10		Bore well
33	A8	21.910184	85.230684	578.12	120	6.5	60		Bore well
34	A9	21.918085	85.209714	573.27					Pond

Table3.2: Post monsoon Monitoring points in Buffer Zone

Fig3.5: DTW map of buffer zone of RaikelaIorn ore Mines (Pre- Monsoon)

Fig 3.6: DTW map of buffer zone of RaikelaIorn ore Mines (Post Monsoon)

3.2.4 Long term water level data analysis

The study area comprises 10km radius zone in Raikela Iron Ore Mines that largely fall under Koira tehsil, Sundergarh district, Odisha. In the core zone village the source of ground water such as bore well; hand pump and pond are used for domestic, irrigation and drinking where out of 3 observation location of dug well, it has been observed that the water level (Pre monsoon 2022) varying from 3 to 7.5m bgl. Long term trend analysis of data obtained from WRIS shows no significant change-rise or fall as depicted in **Fig: 3.7**.

Fig 3.7: Long term well hydrograph of wells of Sundergarh district, Odisha (source: WRIS portal)

Dynamic Groundwater Resource of study area

The groundwater resource as estimated by CGWB (2020) is presented in the table 3.3 for Koira block of Sundargarh district Odisha and is in safe category.

		G	round water	Recharge (Ha	Total Ground	Total	Annual	
District	Diask	Monsoon S	Season	Non Monso	on Season	water	Natural	Extractable
District	вюск	Recharge	Recharge	Recharge	Recharge	(Ham)	Discharge	ground water
		from	from other	from	from other	וחמווון	וחמווו)	(Hom)
		Rainfall	sources	Rainfall	sources			(nam)
Sundergarh	Koira	4777.33	139.58	572.73	172.14	5661.78	283.09	5378.69
Annual	Annual Gro	undwater D	raft (Ham)		Annual GW	Net	Stage of	Categorization
Extractable	Irrigation	Industrial	Domestic	Total	allocation	Groundwate	Ground	(over
Ground				Extraction	for	r availability	water	exploited/
water					Domestic	for future	Extraction	Critical/semi
Resources					use as on	use (Ham)	(%)	critical/ safe/
(Ham)					2025 (Ham)			saline)
5378.63	873.45	290.16	265.25	1428.8	304.71	3910.38	26.57	Safe

Table: 3.3 Block wise Dynamic Groundwater Resources of Koira block, Sundergarh district

3.2.5 Groundwater Quality

Based on the above study, different ground water parameters were computed, which include pH, TDS, EC, and Temperature. Ground water in study area is potable with pH ranging 5.9 to 7.6 and total dissolved solid (TDS) ranging from 10 to 310 ppt and EC ranging from 20 to 600 μ S. (Fig 2.9 and 2.10) Groundwater quality in the study area is fresh and all major and trace elements are found within the BIS 10500 permissible limit. Thus is suitable for all domestic, industrial and irrigational use. The general parameters of groundwater in study area as analyses are given in Table 3.2.The comparison of data reveals that the area mining (Project Area) is having less TDS.TDS and EC map of the Buffer zone is shown in Figure-3.8 & Figure 3.9.

Fig 3.8: TDS map of Raikela Iron Ore mine

Fig-3.9: EC map of 10km of Buffer Zone of Raikela Iron Ore Mines

3.2.6 Water Quality of nearby water bodies

Data in Piper Trilinear Diagram: Different graphical methods can be adopted for representing geochemical variation which gives a better insight into the groundwater quality monitoring. One such efficient method of representation is plotting of Hill Piper Trilinear diagram in which data are plotted in two triangle fields and one diamond field. The diamond is then classified under various categories emphasizing their characteristics.

Fig 3.10: Sub-divisions of the diamond field

On the basis of data collection from CGWB report (2020-2021). It has been observed that out of 63 samples are concentrated in Area 6 indicating that: Non-

carbonate hardness exceeds 50% i.e., Ca + Mg - (SO4 + Cl + NO3). 50% samples are lies under area 4 representing strong acids (SO4 + Cl + NO3) exceed weak acids (CO3 + HCO3). Few samples can be noticed under Area 7: Non-carbonate alkali exceeds 50% i.e., Na + K- (SO4 + Cl + NO3).

Fig 3.11 Piper Trilinear diagram

USSL Diagram: The United States Salinity Laboratory (USSL) (1954) and Wilcox (1955) established standards for irrigation water quality classification. The Fig.7.5 is a simple scatter chart of sodium hazard (SAR) on the Y-axis versus salinity hazard (EC) on the X-axis. Using the SAR and the EC value of 41 water samples of Balaghat area determines the quality classification of the water. Based on the EC, irrigation water can be classified into four categories; include:

- I. Low-salinity water (C₁) can be used for irrigation with most crops on most soils with little likelihood that **soil salinity** will develop.
- II. Medium-salinity water (C_2) can be used if a moderate amount of leaching occurs. Plants with moderate salt- tolerance can be grown in most cases without special practices for salinity control.
- III. High-salinity water (C₃) cannot be used on soils, special management for salinity control may be required and plants with good salt tolerance should be selected.
- IV. Very high salinity water (C₄) is not suitable for irrigation under ordinary conditions.

Sodium Adsorption Ratio: High sodium in irrigation water reduces the permeability of soil. The USSL diagram based on SAR divided to four categories included:

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$

- I. Low-sodium water (S_1) can be used for irrigation on almost all soils.
- II. Medium-sodium water (S_2) will present an appreciable sodium hazard in certain fine-textured soils. This water may be used on coarse-textured or organic soils with good permeability.
- III. High-sodium water (S₃) may produce harmful levels of exchangeable sodium in most soils and will require special soil management.
- IV. Very high sodium water (S₄) is generally unsatisfactory for irrigation unless special action is taken, such as addition of gypsum to soil (Lyerly and Longenecker, 1957).

Fig 3.12: US Salinity diagram, Sundergarh district, Odisha

Data Analysis

On the basis of data collection from CGWB report (2020-2021). It has been observed that out of 63 sample, most of the samples are concentrated under C2S1, C2S2 and C3S2 categories indicating low to medium sodium hazards with medium salinity. Out of these, few samples are scattered under C3S1 and C3S2 categories representing high salinity with low to medium sodium hazard. Few samples are scattered in C1S1 indicating low sodium hazards with low salinity.

4. APPROVED MINE PLAN

4.1 DETAILS OF APPROVED MINING PLAN/SCHEME OF MINING.

Date and reference of earlier approved Mining Plan/Scheme of mining

The details of approved Mining Plan/Scheme of Mining in chronological order are as summarized in

Table 4.1.

Documents approved	Under Rule	Period	Approval
Mining Plan	22 of MCR 1960	1993-94 to 1998-1999	Approved vide letter No RQP/ CAL/ 006/
			87/A/MO-94 dated 27.06.1990
1 st Mining Scheme	12 of MCDR' 1988	1999-2000 to 2003-04	Approved vide their letter No
			BBS/SNG/Fe/MS-7 dated 11.10.1999.
Modification in the			Approved vide their letter No DDS
Approved Scheme of	10 of MCDR' 1988	2002-2003 to 2003-04	Approved vide their letter NO BBS/
Mining			SNG/Fe/MS-7 dated 08.05.2003.
	12 of MCDR' 1988	2004-05 to 2008-09	Approved vide letter No
2 nd Mining Scheme			314(3)/2004/MCCM(C)/MS-14 dated
			17.02 .2005.
3 rd Scheme of Mining	12 of MCDR' 1988	2009-10 to 2011 -12	Approved vide letter No 314(3)/2009
		(up to 01.07.11)	/MCCM/ (CZ)/ MS / 36 dated 22.03.2010.
		01.07.2011- 2012 to	Approved vide letter No 314(3)/
Mining Plan	24A of MCR 1960	2015-16	2011/MCCM/(CZ)/MP/10 dated
			03.08.2011.
1 st Scheme of Mining	12 of MCDR' 1988	2016-17 to 2020-21	Approved vide letter No MPM / FM/07-
			ORI/BHU/2015-16 dated 15.06.2016.
Modification of		2019-20 to 2020-21	Approved vide letter No. MSM/FM/10-
Poviow of the Mining	17(2) of MCP M2016		ORI/BHU/2019-20/1087 dated
	17(5) 01 WICK, WIZ010		20.09.2019
Plan			
Review of Mining Plan	17(2) of MCR M2016	2021-22 to 2025-26	Approved vide letter No. RMP/A/30-ORI/
			BHU/2020-21 dated 18.11.2020

Table 4.1: List of Approved Mine plans

4.2 Mining Method

Opencast fully mechanized method will be adopted to achieve the targeted production. The existing quarries namely Top quarry, Middle quarry and South Pit shall be developed by deploying shovel and dumper combination during the mining operation. Mining operation will be done on the Top quarry on the northern side, bottom quarry on the south eastern side and South pit on the South eastern side with lateral and depth ward extensions with top slicing method. The details of salient description of present mining method in table no 4.2.

Method of Mining	Opencast mechanized method (A-FM).
Type of ore	Laminated hard and soft ore, massive boulder type
Laminated hard and soft ore, massive boulder type	With the help of excavator and Dumper combination.
Bench height and width	10m height with 15m width.
Overall slope angle	28 ^o
Transportation of Ore	By dumper through haulage road to the Crusher at 1:16 gradient.
Blasting	Drilling of 11.0m drill holes with Crawler mounted DTH drill and blasting by using Class 3 explosives. Since the formations are mostly soft, drilling & blasting is done only for 75% of the volume. One hydraulic rock breaker is used for reducing the size of the large boulders instead of secondary blasting.

Table 4.2: Jest of Mining Method

The ROM produced is fed to the Screening unit for the production of 0-10mm, 10-30mm, and +30mm sized ore. The +30 mm ore sent to the crushing unit for production of 5-18mm, 0-5mm. So, the various finished products are 0-5mm, 0-10mm, 5-18mm and 10-30mm.

(i) Recovery factor:

Considering the available borehole data, different litho unit has been demarcated on the Geological section. Based on this updated geological sections different grade wise resource calculation i.e 45 to 55% Fe and +55% Fe has been made. Further waste as BHJ, Shale and Laterite has been demarcated in each geological section, which has been calculated separately. As the grade wise resource and waste calculation carried out separately for each section, 100% recovery factor has been considered for the estimation of resource.

(ii) Cutoff grade

The threshold value is considered at 45%Fe and calculation of reserves is done under different range of Fe% i.e. 45 to 55% Fe and +55% Fe. While above 55% Fe ore is termed as saleable iron ore, below that up to 45% Fe is termed as Mineral Reject. Ore containing less than 45% Fe is considered as mineral waste.

(iii) Ultimate pit depth proposed.

The maximum depth up to which the quarry can be developed economically is considered as the ultimate or conceptual extent of the quarry. Based on the present geological information and mine ability of ore the ultimate pit limit has been marked. The depth of ultimate pit limit has been shown up to the probable limit in the iron ore zone.

(iv) Mineral/ ore blocked dues to benches, safety zone:

During mining operation certain resources have been blocked under UPL, lease boundary safety zone and

blocked area within bench slope. The ore in these blocked areas are non-mineable. Although feasibility study has been carried out and the quantity is established, because of the above mentioned blockages the quantity falls under F-2 category. By considering these blockages, due to above mention various factors, the mineable resource has been estimated.

(v) Tonnage Factor

As per the approved Scheme of Mining, the tonnage factor of saleable ore has been considered as 3.0MT/m3 and for sub-grade ore as 2.5MT/m3. The tonnage factor of waste has been considered as 2.0MT/m3. For tonnage factor the lessee has undertaken a bulk density study through a NABL Accredited Laboratory. The copy of the report is enclosed as **Annexure-XXV**.

Sequence of mining operation

Based on earlier mining operation can be observed that three pits have been formed within the lease area. The dimension of the quarries has been mentioned in the table below in the next page. The following flow chart depicts the entire process of mining which is in-vogue at present in Raikela Iron ore Mine.

Fig 4.1: Flow chart of mining operation

As per guidelines of IBM threshold value of iron ore is considered as 45% Fe. While above 55 % Fe ore is termed as saleable iron ore (cutoff grade), and 45-55% Fe is termed as Mineral Reject iron ore. Ore containing less than 45% Fe is considered as waste.

4.3 PRODUCTION DETAILS.

As per guidelines of IBM threshold value of iron ore is considered as 45% Fe. While above 55 % Fe ore is termed as saleable iron ore (cutoff grade), and 45-55% Fe is termed as Mineral Reject iron ore. Ore containing less than 45% Fe is considered as waste.

YEAR	IRON ORE(MT) (+55%Fe)	MINERAL REJECT (MT) (45-55%Fe)	ROM(MT) (+45%Fe)
2021-22	2023052	966948	2990000
2022-23	4411541	578459	4990000
2023-24	4598847	391153	4990000
2024-25	4680387	309613	4990000
2025-26	4990000	NIL	4990000
TOTAL	20703827	2246173	22950000

Table 4.3: Details of production Plan of iron ore (+55%Fe and 45-55%Fe)

As per the approved mining plan total production of +55%Fe will be 20703827 T. Before dispatch to the consumers, grade wise stacking will be undertaken at specified location proposed in the mining plan. This product will be dispatched as per the requirement of consumers.

Voor	Mineral rejects(MT)							
rear	Total Generation	Storage @ 30%	Blending@ 70% with high grade					
2021-22	966948	290084	676864					
2022-23	578459	173538	404921					
2023-24	391153	117346	273807					
2024-25	309613	92884	216729					
2025-26	Nil	0	0					
Total	2246173	673852	1572321					

Table 4.4: Generation of off grade material/mineral reject (45 – 55 % Fe)

Beyond plan period about 5730731cum of Mineral Reject i.e. 45-55%Fe will be generated. The mineral reject generated will be stored for a short period as per requirement. Further, it is also planned to evacuate the mineral reject by blending with the high grade ore so that stacking of mineral reject during conceptual period will not arise.

5. ESTIMATION OF MINE SEEPAGE AND ADVANCED DEWATERING PLAN

Minimum and Maximum depth of water table based on observations from the nearby well-

The nearest habitations from the mine are Raikela, Dengula, Tantra, Tensa town etc. The wells at village Raikela, and Dengula is indicating that the water level is encountering at 610MRL.

Indicate Maximum and Minimum depth of working

Mining operation in this lease area is going on after the lease was executed. Continuation of mining operation in the area has opened up three quarries i.e. Top Quarry, Middle Quarry and South Pit. The detail of the quarry is as follows in Table no 5.1.

Nameofthe pit	Location	Length (m.)	Breadth (m.)	Depth(m)	Top RL(m.)	Botto mRL (m.)	No of Benches In Ore	No of Bencs In OB	Pit angle	Areaback filled	Areareclai med& rehabilitate d
TopQuarry	N2419636to 2420236 & E 311610to 312070	553.27 01	376. 502	115.778	843.944	728.166	15	0	37°	Nil	Nil
MiddleQuarr y	N2419500to 2420017 & E 311900to 312252	676.61 1	267. 964	90.197	728.685	638.488	16	0	37°	Nil	Nil
SouthPit	N2419237to 2419310 & E 311795to 311925	75.957	59.4 43	23.551	688.551	665.000	4	0	25°	Nil	Nil

Table 5.1:.depth of working in existing lease quarries

It has been proposed to develop the existing pits i.e. Top Quarry and Middle Quarry. At present the existing bottom RL of Top quarry is 730.497m and Middle quarry is 638.488m. During ensuing plan period the working will be done up to 690m.RL in Top quarry, 620m.RL in Middle quarry.

 Table 5.2: Ultimate Pit limit within Plan Period

Name of the	At the end of plan period (m.RL)				
Quality	Тор	Bottom			
Top Quarry	843.944	690			
Middle Quarry	730.497	620			

5.1 Rain water accumulation within Open Mine Pit Area

The open pit area in Raikela Mines is 33.593ha. The average rainfall receive in the area as per record is 1415.126mm, i.e. 1.415m (Table 3.1), that occurs in about 75days. The maximum daily rainfall ever recorded at Koida was 110 mm on 12.08.2022. The Iron ore Mines is located on the hill slop and

garland drains were constructed along the boundary of the Mine pit, hence no runoff water enters within the open pit area.

Considering above facts of rainfall, the total volume of water can be generated within the mine area has been calculated and present below.

Duration	Open Mine area in Ha	Rainfall in m	Volume in ham	Volume in m3	Considering Rainy days	Total volume in m3
Annual	33.593	1.415	47.5341	475341	75	6338
Max/day(110mm)	33.593	0.11	3.6952	36952	1	36952

Table 5.3. Rain water accumulation within the Pit area

As per the above table of calculation the maximum volume of water that can be generated within the open mine pit annually is about 47.53ham. However, the per day rain fall is 6338m3/d only and in extreme case it will be 36952m3.

Considering evaporation and percolation losses per day, it will insignificant quantity of water left for discharge by pumping.

It is therefore concluded that there is no adequate rain water accumulation in pit bottom nor it cut the groundwater table. Hence no mine water discharge generated from Raikela Iron Ore Mines.

5.2 Estimation of Mine seepage – NA

5.3 Advance Dewatering Plan in case of Coal/Lignite Mines - NA

5.4 GW modelling- NA

6.0Mine water Management

6.1 WATER REQUIREMENT:

The project proponent should submit the quantity of surface water or ground water to be used in this project. The complete water balance cycle needs to be used for this project. The complete water balance cycle needs to be submitted. In addition to this the project proponent should submit a detailed plan for rain water harvesting measures to be taken. PP should submit the year wise target for reduction in consumption of the ground/surface water by developing alternative source of water through rain water harvesting measures. The capital and recurring expenditure to be incurred need to be submitted.

The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the project should be indicated.

Total water management including domestic use were sourcing from bore well, rain water harvesting and recycling of waste water from ETP/STP, both for monsoon and non-monsoon be submitted of the existing mines and propose expansion. Total makeup water requirement for production of 4.99 MTPA Iron Ore is 281.3 KLD, 170KLD is sourced from bore well, and 98 KLD from rain water harvesting and 13.3 KLD recycling water from STP & ETP.

The water requirement for the Project, its availability and source should be furnished. A detailed water balance has been al provided in Table no 6.1. Fresh water requirement for the project should be indicated. Total water requirement for production of 4.99 MTPA of Iron Ore is281.3KLD. Out of this requirement from groundwater withdrawal is only 170KLD. The water required will be sourced from bore well existing within the lease area. The proponent has proposed to draw the required quantity from bore well for 8 months excluding summer season. During summer season the required quantity will be met from rain water harvesting pond. The details of breakup of 281.3 m3 /day are as follows:

Sl. No	Purpose	Ground Water (KLD)	RWH (KLD)	Recycled STP &ETP (KLD)	Total from all source (KLD)
1	Dust Suppression	127.4	90	5.1	222.5
2	Domestic Use	14.0			14.0
3	Plantation	16.3	8.0	8.2	32.5
4	ETP & Workshop, Wheel Washing System	12.3	-	-	12.3
Total		170	98	13.3	281.3

Table 6.1: Details of water requirement in mining operation

Fig- 6.1 Flowchart for Mine water utilization

There will be reduction of 10 KLD of groundwater in total consumption of water in the mining activates. The necessary requirement has been fulfilled through rain water harvesting and recycled water. The flowchart of water utilization is shown in Fig 6.1.

1stNOC for drawl of 64.5 m3/day of Ground water has been obtained from CGWA vide ltr no 21-4(83/3ER/CGWA/2008-1723 dt 18.12.2008. After that, NOC for drawl of 180 m3/day of Ground water has been obtained from CGWA vide ltr no CGWA/NOC/MIN/ORIG/2021/10588 dt 31.01.2021 (Annexure 1) for expansion of productivity. The water requirement will be met from own bore wells situated in the lease area. The area falls under safe category as far as stage of development is concerned.

7. Impact of mine Dewatering/ Abstraction and Mitigation Measures

Piezometric well has been established to monitor the ground water Table/water depilation in the lease area due to withdrawal of groundwater. After observing the detail Piezometric reading from April to July 2022 (Pre-monsoon) no Impact has been seen in water level in the area because of Abstraction of the ground water for the smooth running of the Mines in the lease (Shown in Table 7.1).Detail of the reading has been attached in Annexure5. Rain water harvesting and recharge structures were established for minimise the ground water extraction and recharge the area.

Sl. No	Date	Time	Water Level
1	30 March 2022	06:00 AM	10.61
2	30 May 2022	06:00 AM	10.74
3	30 June 2022	06:00 AM	10.74
4	30 July 2022	06:00 AM	10.74
5	August 2022	06:00AM	5.25
6	30 September 2022	06:00 AM	5.3
7	30 October 2022	06:00 AM	10.75

Table 7.1: Pre-monsoon and Post-monsoon water level within the lease area

7.1 Impact on ground water regime

As discuss above no major/Serious Impact has been reported in the area because of groundwater withdrawal. The lease area is lies within the Safe zone for groundwater. Groundwater flow is in the outside direction from the lease area hence no or very less effect of groundwater regime will be reported because of the mining activities.

7.2 Impact on Surface water sources

Retaining wall is already present partly around the existing waste dump. Further it is proposed to construct a retaining wall at the bottom periphery of the waste dump mineral reject stack followed by a garland drain during the plan period, showing in Fig 7.1.

Water during rainy season that percolates through the wastes in the waste/overburden dump shall be drained to the garland drain and the retaining wall shall help in arresting movement of waste materials. Garland drain shall be channelized in such a way that the water flows to an area which should be on non-ore bearing and a wasteland. Regular cleaning of the drain shall be done for easy flow of water. Besides the garland drain and the retaining wall, six (6) settling pond of 10 m x 8 m x 2 m size will be constructed at the end of garland drain, which will accumulate water. Alum shall be added here for settlement of suspended solids. After suspended solids are settled, the water shall be discharged outside the lease area. In the rainy season the water from the pits shall be pumped out to the garland drain at the top of the quarry so that entire water flows to outside the working area keeping the bottom of the pit in dry condition. A rain water harvesting pond has been constructed and this pond water will be used for different purposes within the mines. The proposed year wise protective measures are furnished in table no 7.2 & 7.3.

Location	Ret	aining w	all	Ga	rland drai	'n		Settlin	g pond	
Location	L(m)	W(m)	H(m)	L(m)	W(m)	D(m)	Nos	L(m)	W(m)	D(m)
Proposed Mineral reject stack -1	620	1.0	2.0	620	1.0	1.5	3	10	8	2
Proposed Mineral reject stack -2	188	1.0	2.0	468	1.0	1.5	1	10	8	2
Proposed Mineral reject stack -3	230			230	1.0	1.5	1	10	8	2
Total	1038	1.0	2.0	1318	1.0	1.5	5	10	8	2

 Table 7.2: Protective Measures around the Mineral reject stack

Veer	Re	taining wa	all	Ga	rland drai	n	Settling tank/Pond			
rear	L(m)	W(m)	H(m)	L(m)	W(m)	D(m)	Nos	L(m)	W(m)	D(m)
2021 22	000	1.0	1 5	1010	1.0	1.0	3	10	8	2
2021-22	000	1.0	1.5	1010	1.0	1.0	1	200	30	5
2022-23	415	1.0	1.5	690	1.0	1.0	2	10	8	2
2023-24	500	1.0	1.5	670	1.0	1.0	2	10	8	2
2024-25	120	1.0	1.5	120	1.0	1.0		10	8	2
2025-26	Maintena	ance		Maintena	ance		Maint	enance		
Total	1923	1.0	1.5	2490	1.0	1.0	8	10	8	2

Table 7.3: Year wise proposal of retaining wall, garland drain & settling pond

Coir matting over proposed dump: It has been proposed to prevent waste dump from water cutting in rainy season. Detail year wise construction shown in Table 7.4.

Period	Area of coir matting	No of sapling
2021-22	4000 sq.m	grass seedlings
2022-23	2500 sq.m	grass seedlings
2023-24	4100 sq.m	grass seedlings
2024-25	3700 sq.m	grass seedlings
2025-26	2900 sq.m	grass seedlings
Total	17200 sq.m	

Table 7.4: Year wise proposal of coir matting

Fig 7.1: Retaining Walls and Garland Drain in Mining area

7.3 Impact on water quality

Continuous monitoring has been taken care by the mines authority. Quarterly ground water sample of the lease area and nearby places has been collected and send for testing at NABL aggregated Laboratory at Bhubaneswar. In Laboratory 43 parameters have tested. Till now no serious Impact/issues has been reported in the groundwater quality.

According to the Report Groundwater is safe for drinking and other activates. The test report of NABL accredited Laboratory, conducted in moth of October, 2022 is shown in Fig 7.2. Also the analysis report of surrounding three 3 wells is attached as Annexure4.

FORMERLY # 150-9021-20	AL TECH ENVIRO EXPERTS GLOBAL EXPERTS) 2015 Carrolford Company	S PVT. L	TD.	C-23, B/B Negar, Brubaneswar /75064 Prin: 26/4-2436853 Fash: 0(74-2436853 Fash: 0(74-2435487 E-mail-geodesemage geodesemage entral sectors ettil set	redifficial com familiaan fervetept.com
GTEEPI	L/LQR/56	TEST R	EPORT	67	4
NABL U	LR NO : TC10101220	00000203P		D	100
Report N	o. : GTEEPL/09	/22/GW/203	WF Issue D	ute: 07.10.2022 TC-	10101
Name of t	the Client : Raikela Iror Raikela Koi	1 Ore Mines	s of M/s Geetarani Mohanty narh, Odisha		
Date of Sa Date of T Sampling Identifice Quantity	ampling : 06.09.2022 esting : 08.09.2022 tx E Location : Office Bore ation of Sample : Ground Wat of Sample : 11LTR X 2	y 14.09.2022 Well (Inside ter	Date o ? ? Mines Office)	f Receiving: 07,09,202	2
Sampling	Parameters	Unit	Testing Method	Requirement as per IS 10500:2012RA 2018	Analysis Result
Physical	l Parameters				
1	pH		IS 3025(Part-11)1983 RA 2017	6.5 to 8.5	6.57
2	Odour		1S 3025(Part 5) 2018	Agreeable	Agreeable
3	Colour	Hazen	IS 3025(Part 4) 2021	5(max)	<1.0
4	Electrical Conductivity	µs/cm	IS 3025(Part-14) :2021	11211	190
5	Total Dissolved solids	mg/l	IS 3025(Part-16)1984 RA 2017	500 (max)	113
6	Total Suspended Solids	mg/l	1S 3025(Part-17):1984 RA 2017		<1.0
7	Turbidity	NTU	IS 3025(Part-10)1984 RA 2017	1.0(max)	<0.5
Chemic	al Parameters			- Constraints	Luna.
8	Total Hardness as CaCo3	mg/l	IS 3025(Part-21)2009 RA 2019	200(max)	62.8
9	Calcium Hardness as CaCO ₃	mg/l	IS 3025(Part-40)1991 RA 2019		40.2
10	Magnesium Hardness as CaCO ₁	mg/l	IS 3025(Part-46)1994 RA 2003		22.6
11	Total Alkalinity as CaCo3	mg/l	IS 3025(Part-23) 1986 RA 2019	200(max)	46.4
12	Calcium as Ca	mg/l	1S 3025 (Part-40) 1991 RA 2019	75(max)	16.12
13	Magnesium as Mg	mg/l	APHA 3500Mg B	30(max)	5.49
14	Chloride as Cl	mg/l	IS 3025(Part-32)1988 RA 2019	250(max)	9.8
15	Sulphate as SO4	mg/l	IS 3025(Part-24)1986 RA 2019	200(max)	2.1
16	Fluoride as F	mg/l	APHA F 4500 C-D	1.0(max)	0.34
17	Nitrate as NO3	mg/l	APHA 4500 NO3-B	45(max)	1.4
18	Total Ammonia	mg/l	1S 3025(Part-34)1988RA2019	0.5(max)	<0.3
19	Free Residual Chlorine	mg/l	IS 3025: (Part-26) 2021	0.2(min)	<0.1
20	Mineral Oil	mg/l	IS 3025(Part-39) 2021	0.5(max)	<0.4
21	Iron as Fe	mg/l	IS 3025(Part-53)2003 RA 2019	1.0(max)	0.45
22	Hexavalent Chromium as Cr+6	mg/l	IS 3025(Part-52)2003 RA 2019		<0.01

٦

GLOBAL TECH ENVIRO EXPERTS PVT. LTD.

(FORMERLY GLOBAL EXPERTS) An (SO-9001.2008 Certified Company C-23, UIR Nagar, Minitaresner 731014 Ph. Golf4-2436853 Inc. Golf4-2438467 E-mail- alobalepart different factor alobalepart of the second same wait us: week globaltecharrowspt.com

Report No: GTEEPL/0/22/GW/203F

23 Phospl 24 Silica 25 Sodiur 26 Potass 27 Total 0 28 Pheno 29 Sulphi 30 Alumi 31 Boron 32 Cyanii 33 Arseni 34 Coppe 35 Manga 36 Lead a	hate as PO ₄ m as Na ŝum as K Chromium as lic Compounds as DH ide as H ₂ S inium as Al e as B de as CN ic as As er as Cu	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	APHA 23 rd Ed (4500-P-D): 2017 APHA 23rd Ed (4500-SiO ₂ -C): 2017 IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009 IS 3025(Part-43)1992 RA 2019 IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	 0.05(max) 0.001 (max) 0.05(max) 0.03 (max) 0.5 (max) 0.05(max.)	<0.05 0.3 18.6 4.9 <0.01 <0.001 <0.05 <0.02 <0.01 <0.01
24 Silica 25 Sodiur 26 Potass 27 Total 4 28 Pheno CeH3C 29 Sulphi 30 Alumi 31 Boron 32 Cyanio 33 Arseni 34 Coppe 35 Manga 36 Lead a	m as Na sium as K Chromium as lic Compounds as DH ide as H ₂ S mium as Al as B de as CN ic as As er as Cu annone as Mn	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	APHA 23rd Ed (4500-SiO ₂ -C): 2017 IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009 IS 3025(Part-43)1992 RA 2019 IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	 0.05(max) 0.001 (max) 0.001 (max) 0.03 (max) 0.5 (max) 0.5 (max) 0.05(max.)	0.3 18.6 4.9 <0.01 <0.001 <0.05 <0.02 <0.1 <0.01
25 Sodiur 26 Potass 27 Total 0 28 Pheno CeH3C 29 Sulphi 30 Alumi 31 Boron 32 Cyanio 33 Arseni 34 Coppe 35 Manga 36 Lead a 37 Selami	m as Na hum as K Chromium as tic Compounds as DH ide as H ₂ S inium as Al as B de as CN ic as As er as Cu annese as Mn	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009 IS 3025(Part-43)1992 RA 2019 IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	 0.05(max) 0.001 (max) 0.05(max) 0.03 (max) 0.5 (max) 0.05(max.)	18.6 4.9 <0.01 <0.001 <0.05 <0.02 <0.1 <0.01
26 Potass 27 Total 4 28 Pheno CeH3C 29 Sulphi 30 Alumi 31 Boron 32 Cyania 33 Arseni 34 Coppe 35 Manga 36 Lead a	ium as K Chromium as lie Compounds as DH ide as H ₂ S inium as Al as B de as CN ic as As er as Cu anese as Mn	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009 IS 3025(Part-43)1992 RA 2019 IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.05(max) 0.001 (max) 0.05(max) 0.05(max) 0.03 (max) 0.5 (max) 0.05(max)	4.9 <0.01 <0.001 <0.05 <0.02 <0.1 <0.01
27 Total 0 28 Pheno C ₆ H ₃ C 29 Sulphi 30 Alumi 31 Boron 32 Cyanii 33 Arseni 34 Coppe 35 Manga 36 Lead a	Chromium as lic Compounds as DH ide as H ₂ S nium as Al as B de as CN ic as As er as Cu ancese as Mn	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	IS 3025(Part-52) 2003 RA 2009 IS 3025(Part-43)1992 RA 2019 IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.05(max) 0.001 (max) 0.05(max) 0.03 (max) 0.5 (max) 0.05(max.)	<0.01 <0.001 <0.05 <0.02 <0.1 <0.01
28 Pheno C ₆ H ₃ O 29 Sulphi 30 Alumi 31 Boron 32 Cyanio 33 Arseni 34 Coppe 35 Manga 36 Lead at	lic Compounds as DH ide as H ₂ S inium as Al as B de as CN ic as As er as Cu ances as Mn	mg/l mg/l mg/l mg/l mg/l mg/l	IS 3025(Part-43)1992 RA 2019 IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.001 (max) 0.05(max) 0.03 (max) 0.5 (max) 0.05(max.)	<0.001 <0.05 <0.02 <0.1 <0.01
 Sulphi Alumi Alumi Boron Cyanio Cyanio Arseni Arseni Coppe Manga Lead a Selani 	ide as H ₂ S inium as Al as B de as CN ic as As er as Cu anese as Mn	mg/l mg/l mg/l mg/l mg/l	IS 3025(Part-29)1986 RA 2019 IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.05(max) 0.03 (max) 0.5 (max) 0.05(max.)	<0.05 <0.02 <0.1 <0.01
 Alumi Boron Cyani Cyani Arseni Arseni Coppe Manga Lead a Selani 	nium as Al as B de as CN ic as As er as Cu anese as Mn	mg/l mg/l mg/l mg/l	IS 3025(Part-55)2003 RA 2019 IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.03 (max) 0.5 (max) 0.05(max.)	<0.02 <0.1 <0.01
31 Boron 32 Cyanie 33 Arseni 34 Coppe 35 Manga 36 Lead a 37 Seleni	as B de as CN ic as As er as Cu ances as Mn	mg/l mg/l mg/l	IS 3025(Part-57)2005 RA 2017 IS 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.5 (max) 0.05(max.)	<0.1 <0.01
 Cyanie Arseni Arseni Coppe Manga Lead at Seleni 	de as CN ic as As er as Cu anese as Mn	mg/l mg/l	1S 3025(Part-27)1986 RA 2019 IS 3025(Part-37)1988 RA 2019	0.05(max.)	< 0.01
33 Arseni 34 Coppe 35 Manga 36 Lead a 37 Selemi	ic as As er as Cu	mg/l	IS 3025(Part-37)1988 RA 2019		
34 Coppe 35 Manga 36 Lead a 37 Selemi	er as Cu anese as Mn	mail	The second se	0.01(max)	< 0.01
 35 Manga 36 Lead a 37 Seleni 	anese as Mn	mayi	IS 3025(Part-42)1992 RA 2019	0.05(max)	< 0.01
36 Lead a	ancse as (vin	mg/l	IS 3025(Part-59)2006 RA 2017	0.1(max)	<0.05
37 Seloni	as Pb	mg/l	IS 3025(Part-47)1994 RA 2019	0.01(max)	< 0.01
37 Serem	um as Se	mg/l	IS 3025(Part-56)2003 RA 2019	0.01(max)	< 0.001
38 Nicke	l	mg/l	IS 3025(Part-54)2003 RA 2019	0.02(max)	<0.01+
39 Zinc a	is Zn	mg/l	IS 3025(Part-49)1994 RA 2019	5 (max)	0.06
40 Cadmi	ium as Cd	mg/l	1S 3025(Part-41)1992 RA 2019	0.003(max)	0.001
41 Mercu	iry as Hg	mg/l	IS 3025(Part 48) 1994 RA 2009	0.001(max)	<0.001
42 Anion	ic detergent as MBAS	mg/l	Annex K of IS 13428	0.2(max)	<0.2
Bacteriologi	ical Quality		3-		10-
43 Total	Coliform Bacteria	MPN/100ml	IS 1622:1981 RA 2019	Shall not be detected in any 100 ml sample	<2
			-END OF REPORT-	1	

Fig7.2: Quality Report from NABL accredited Lab for Office Bore-well in October, 2022

7.4 Mitigation Measures

The rain fall data has been obtained from WARIS online portal for the financial year 20011-2020. Based on the data the rain minimum Annual rainfall is 1098.51mm in 2016 and the maximum rain fall is 1562.24mm in 2020. However, the average rain fall data is calculated to be 1415.126 mm. Since the proposed waste dumps are located in areas which is a steep slope, maximum flow of water in rainy season will endanger the retaining walls. Therefore, concrete wall were construct along the toe of the proposed/existing dump. However, the following precautionary measures shall be taken while designing the retaining walls and garland drains.

Retaining Walls

Retaining boulder wall (2.0m high and 1.0m width) of substantial strength shall be constructed all around the bottom periphery of waste dumps with locally available boulders mixed with sand and cement, to arrest any rolling down of the dump materials. Perforation shall be left at around 10 m intervals to allow for passage of water.

Garland drains

Garland drains of 1.5 m deep and 1.0 m wide shall be constructed all along the bottom periphery of waste dumps followed by the retaining wall to prevent any wash off or leaching of dump materials during heavy rains. Side walls and the base shall be pitched with locally available boulders. Joints shall be filled up with cement and sand mixture so that water cannot percolate.

Settling Tank

The garland drain shall be channelized to settling tank of 10m long, 8m width and 2.0m deep. Side walls and base shall be packed with locally available boulders mixed with cement and sand.

RWH Ponds

Fig-7.3: Rainwater Harvesting Pond

Fig-7.4: Roof Top Rainwater Harvesting in Lease area.

Piezometric Well

Piezometric wells were established for continuous monitoring of groundwater level. It is helpful for keep an eye on ground water fluctuationdue to extraction for various mining activates. Day wise three readings has been collected i.e, at 00.00hrs, 06.00hrs, 12.00hrs and 18.00hrs Post Monsoon and Pre-monsoon is attached in Annexure 5.

Rainwater Harvesting Pond and Bunds

The average annual rainfall is around 1278 mm per annum. The maximum daily rainfall ever recorded at Koida was 110 mm on 12.08.2022. Out of which 36% is lost as the surface runoff, 44% is lost through evapotranspiration and only 20% is enter into the subsoil and recharge the aquifer. To harvest the rain water in the lease area, one Pond is constricted and one is proposed for future. Two nala bunds are also constricted for catch the flood and recharge the groundwater. Figure 7.3 and Fig 7.5 is showing the Pond in Lease area.

Roof Top Rainwater Harvesting in Lease area

To catch the roof top water during rainy days and roof top rain water harvesting structures has been established in the lease area to direct recharge the groundwater. The established structure is shown in Figure 7.4.

Regularly Plantation:

Regular plantation has been planned in lease area to protect forest, environment and soil cutting. After closer of the mines the complete leasehold will be afforested. As shown in fig. 7.6.

ETP/STP:

ETP is constricted within the lease hold to recycle the wastage water and again make it usable. Shown in Fig7.7.

Fig 7.5: Section showing reclamation and restoration of mined out areas

Fig 7.6: Post mining land use plan with reclamation and restoration of mined out areas

Fig 7.7:. ETP for recycle of water is established in Lease area.
7.5 Saline water Disposal- NA

8. Summery and conclusion

The groundwater resource as estimated by CGWB (2020) is presented in the table 3.3 for Koira block of Sundargarh district Odisha and is in safe category. The total estimated recharge in this block is 5661.78(Ham) and the Discharge is 283.09Ham. The total available extractable water is 5378.69 Ham. At present, area is having huge surplus reserves. Hence, no adverse impact on ground water regime of the area is envisaged. Further, area comes under safe category.

However, the RWH structure have been constructed and proposed to be constructed further to augment ground water resource of the area. It reduces the cost for pumping of ground water, reduces soil erosion in urban areas, and Provides self-sufficiency to your water supply.

The slope of groundwater flow is apart from the mine. Hence, with reference to our field study, earlier NOC and GCWB report, it has been safely concluded that the area is under safe zone and the extraction of water for the mining activates will not affect groundwater in adverse. The available and proposed measure of RWH and groundwater recharging also play the key role in fulfilling the requirement and sustain the groundwater.

													ANNE>	(URI	E 12		
	N) OBJE	ECTIO	ON CE	(মূড RTIFIC	त्त निव CATE	हासी (NO	हेतु	अना FOR	गत्ति प्रम GRO	ाण प UNC	ম River স)	जर अं केन्द्र Go Min Develop Central (Central (भार जल इ न संसा ोर गंगा रीय भूर् vern nistry ent oi omen Groui STF	रत सरका शक्ति मंत्र धन, नदी I संरक्षण मि जल प्र ment of of Jal f Wate t & Gaa nd Wat	र लय विकास विभाग धिकरण I India Shakti Resourn ga Reju er Autho	ces, venatior rity
Pr	oject Nam	e:			Raike	la Iron	Ore I	Mine	е							2	
Project Address: Village-raikela						4.41						2					
Village: Raikela								Bloc	k: K	Koida							
Di	strict:				Sund	argarh	1				State	e: 0	disha	1	Ť		
Pi	n Code:											X	Ċ				
C	ommunical	ion Addr	ess:		Bomi Odish	khal, P na - 75	lot No 1010	38	0, Ra	sulgarh	, Bhu	ibanesw	ar, Bhub	ane	swar,	Khordha	ì.,
A	dress of C	GWB Re	egional	Office	: Centr Squa	al Grou re, Nh-	und W 5, Bh	Vate uba	er Boa anesh	rd Sou war, Kh	th Ea ordh	stern Re a, Odisha	gion, Bh a - 7500	ujal 01	Bhaw	an, Kha	ndagiri
1.	NOC No.		CGV	VA/NO	C/MIN/O	RIG/20	021/1	058	8		Ŕ	2					
2.	Applicatio	n No.:	21-4	/2466/0	OR/MIN/	2020				3.	Category: (GWRE 2017)			Safe	•		
4.	Project St	atus:	Exis	ting Pro	oject					5.	NOC Type:			New			
6.	Valid from	n:	31/0	1/2021					\sim	7.	7. Valid up to:			30/01/2023			
8.	Ground V	ater Abs	tractio	n Perm	itted:				\geq								
	Fresh	Water			Saline	Wate	r,	\geq		De	wate	ring			Т	otal	
	m³/day	m³/y	ear	m	²/day	m	³/year	ć.,	r	n³/day		m³/yea	r	m³/c	day	m³	year
-	180.00	5559	2.50			0.											
9.	Details of	ground v	vater a	bstract	ion /Dew	vatering	g strue	ctur	es				- 7474.55 18 1945.55			71. AL 47	
			Tot	al Exis	ting No	.:2		2112			-		Total P	ropo	sed N	0.:0	
	Abotroatio	Chryster	rat.	DW	DCB	BW	100		MP	MPu	DV	V DCE	S BV	V	1W	MP	MPu
*	Abstractio	CR Dug o	re um Rore	Woll: RV	U Bore We		U ube M	oll- N	U MD Mir	Dit-MD	Mine	Dumpe	0		U	0	U
10.	Ground V	ater Abs	tractio	n/Resto	pration C	hardes	s paid	(Rs	s.):	o r n, an	LI-IVIII IS	i unps	11	118	5.00		
11.	Number o	f Piezon	neters((Observa Monito	ation we	lls) to t	be m.	No	o. of P	iezome	ters		Monite	oring	Mech	anism	
		6	/									Manual	DWLF	2**	DWLF	With T	elemet
	**DWLR - D	igital Water	Level R	lecorder						1		0	1			0	
	DWLR - D	igital Wate	r Level R	lecorder	(Con This is an	n plian d auto gen	ce Co erated	ndi doci	i tions ument	1 given & need n	over ot to b	Manual 0 eaf) e signed.	DWLF 1	₹	DWLF		/ith To 0

Annexure 1: Copy of Present NOC for Groundwater Abstraction by CGWA

Validity of this NOC shall be subject to compliance of the following conditions:

Mandatory conditions:

 Installation of digital water flow meter (conforming to BIS/ IS standards) having telemetry system in the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate through the webportal.

2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.

3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines . Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II

4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / dug wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.

5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.

6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.

7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC.

8) The firm shall submit the water audit report in case of water requirement is in excess of 100 m3/day through certified auditors within three months of completion of the me to CGWA.

Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act, 1986.

10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

General conditions:

11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA)

12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period).

13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.

14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.

15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.

16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water.

17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.

18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.

19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.

20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities.

21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.

22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.

23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)

Accreditation Board of CGWA Certificate of Accreditation M/s. Manav Rachna Centre for Advance Water Technology and Management, (MRCAWIM) of (MRJIRS) Has been accredited as a Ground Water Professionals to prepare reports in the Functional Areas of - Impact Assessment Report without Modelling. - Hydrogeological Report for mining projects. Valid from : 01.10.2021 Certificate No. : CGWA/RGI/025 Valid thru : 30.09.2026 Dated : 30.11.2021 होत्रीय निदेशक **Regional Director** Member आरजीएनजीडब्ल्यूटीआरआई आरजीएनजीडब्ल्यूटीआरआई **RGNGWT&RI** RGNGWT&RI

Annexure 2: Copy of Accreditation of MRCAWTM, Faridabad

Annexure 3: Work Order copy to MRCAWTM from Raikela Iron Ore Mines

WCS World Consultancy Services	MY WORLD CONSULTANCY SERVICES PRIVATE LIMITE GST NO: 21AADCT4043N1Z
Ref No. WCS/44/2022-23/HG	Date.08.10.2022
То	
The Director,	
Manav Rachna Centre for Advanced Wat	ter Technology & Management (CAWTM)
Manav Rachna International Institute of	Research and Studies,
Faridabad 121004, Haryana	
Subject: Work Order for carrying out hy report in respect of Raikela Iro Sundargarh district of Odisha.	drogeological study and preparation of Hydrological study on ore mine of M/s Geetarani Mohanty in Koira Tahasil of
Ref: "MOU" between My WCS and MR	IIS, Dated. 01.03.2022
Dear Madam/Sir,	
As per the discussion held with you, a carry out Hydrogeology Study of the abo	we are herewith authorizing your valued organization to ove depicted subject with following scope of work.
Scope for MRIIS:	
 Comprehensive report on groun mine. 	d water conditions in both core and buffer zones of the
 Depth wise and year wise mine s 	eepage calculations.
 Impact assessment of mining and according impact 	d dewatering on ground water regime and its socio-
 Details of recycling reuse and re mining and water management to 	echarge reduction of pumping with use of technology for o minimize and mitigate the adverse.
Report will comprise Introductio	n Project description Background Objectives and scope
regional setting Location.	
Land use Climate.	
Topography and drainage Geolo	gy
Regional and Local General Hyd	rogeology (aquifer types, aquifer depth, zone tapped etc.)
Groundwater condition (In core a	nd buffer zones)

Annexure 4: Water Quality Analysis by NABL Accredited Laboratory

GLOBA (FORMERLY M 150-9001-20	AL TECH ENVIRO EXPERTS GLOBAL EXPERTS) 2013 Carteford Company	S PVT. L	TD.	C-33, B/B Regar, Biolonewar /731016 Philipic B/A-3436833 Fasi: 0074-3436834 Fasi: 0074-3438487 E-mail- giotulicopents@molifimal.com mini-to.com/0.02116/j.com withitium: www.giotalcontermetest0.com		
GTEEPI	L/LQR/56	TEST R	EPORT	1	3	
NABL UI Report N Name of 1 Address Date of S Date of T Sampling Identific Quantity Sampling	LR NO : TC10101220 o. : GTEEPL/09; the Client : Raikela Iron : Raikela, Koi ampling : 06.09.2022 'esting : 08.09.2022 tx g Location : Office Bore' ation of Sample : Ground Wal of Sample : ILTR X 2 g procedure : GTEEPL/LS	00000203P /22/GW/203 1 Ore Mine ra, Sundary 1 14.09.2023 Well (Inside ter OP/09	3F Issue Da s of M/s Geetarani Mohanty garh, Odisha, Date of 2 e Mines Office)	nte: 07.10.2022 TC.	10101 2	
SL No.	Parameters	Unit	Testing Method	Requirement as per IS 10500:2012RA 2018	Analysis Result	
Physical	l Parameters		1		1292	
1	pH		IS 3025(Part-11)1983 RA 2017	6.5 to 8.5	6.57	
2	Odour	100	1S 3025(Part 5) 2018	Agreeable	Agreeable	
3	Colour	Hazen	IS 3025(Part 4) 2021	5(max)	<1.0	
4	Electrical Conductivity	µs/cm	IS 3025(Part-14) :2021	10000	190	
5	Total Dissolved solids	mg/l	IS 3025(Part-16)1984 RA 2017	500 (max)	11,3	
6	Total Suspended Solids	mg/l	1S 3025(Part-17):1984 RA 2017		<1.0	
7	Turbidity	NTU	IS 3025(Part-10)1984 RA 2017	1.0(max)	<0.5	
Chemic	al Parameters					
8	Total Hardness as CaCo ₃	mg/l	IS 3025(Part-21)2009 RA 2019	200(max)	62.8	
9	Calcium Hardness as CaCO3	mg/l	IS 3025(Part-40)1991 RA 2019		40.2	
10	Magnesium Hardness as CaCO ₃	mg/l	IS 3025(Part-46)1994 RA 2003		22.6	
11	Total Alkalinity as CaCo3	mg/l	IS 3025(Part-23) 1986 RA 2019	200(max)	46.4	
12	Calcium as Ca	mg/l	1S 3025 (Part-40) 1991 RA 2019	75(max)	16.12	
13	Magnesium as Mg	mg/l	APHA 3500Mg B	30(max)	5.49	
14	Chloride as Cl	mg/l	IS 3025(Part-32)1988 RA 2019	250(max)	9.8	
15	Sulphate as SO4	mg/l	IS 3025(Part-24)1986 RA 2019	200(max)	2.1	
16	Fluoride as F	mg/l	APHA F 4500 C-D	1.0(max)	0.34	
17	Nitrate as NO3	mg/l	APHA 4500 NO3-B	45(max)	1.4	
18	Total Ammonia	mg/l	IS 3025(Part-34)1988RA2019	0.5(max)	<0.3	
19	Free Residual Chlorine	mg/l	IS 3025: (Part-26) 2021	0.2(min)	<0.1	
20	Mineral Oil	mg/l	IS 3025(Part-39) 2021	0.5(max)	<0.4	
21	Iron as Fe	mg/l	IS 3025(Part-53)2003 RA 2019	1.0(max)	0.45	
			18 2025/ Best \$2)2002 BA 2010		<0.01	

A

GLOBAL TECH ENVIRO EXPERTS PVT. LTD. (FORMERLY GLOBAL EXPERTS) An ISO-98012008 Certified Company C-23, BIB Nagar, Biotaneswar (*2304 Mr. 0694-245085 Jaco 0674-245085 Jaco 0674-245085 Jaco 0674-2453467 E-mail- giotalesentia@realfitmail.com giotalesentia@realfitmail.com whittus: www.globaltecherwexpl.com

Report No: GTEEPL/0/22/GW/203F

24 25 26	Long to a long t	and a	APHA 23 ^m Ed (4500-P-D): 2017		<0.05
25 26	Silica	mg/l	APHA 23rd Ed (4500-SiO2-C): 2017		0.3
26	Sodium as Na	mg/l	IS 3025: (Part-45) 1993 RA 2019		18.6
	Potassium as K	mg/l	1S 3025: (Part-45) 1993 RA 2019		4.9
27	Total Chromium as	mg/l	IS 3025(Part-52) 2003 RA 2009	0.05(max)	< 0.01
28	Phenolic Compounds as C6H3OH	mg/l	IS 3025(Part-43)1992 RA 2019	0.001 (max)	< 0.001
29	Sulphide as H ₂ S	mg/l	IS 3025(Part-29)1986 RA 2019	0.05(max)	<0.05
30	Aluminium as Al	mg/l	IS 3025(Part-55)2003 RA 2019	0.03 (max)	<0.02
31	Boron as B	mg/l	IS 3025(Part-57)2005 RA 2017	0.5 (max)	<0.1
32	Cyanide as CN	mg/l	1S 3025(Part-27)1986 RA 2019	0.05(max.)	< 0.01
33	Arsenic as As	mg/l	IS 3025(Part-37)1988 RA 2019	0.01(max)	<0.01
34	Copper as Cu	mg/l	IS 3025(Part-42)1992 RA 2019	0.05(max)	<0.01
35	Manganese as Mn	mg/l	IS 3025(Part-59)2006 RA 2017	0.1(max)	<0.05
36	Lead as Pb	mg/l	IS 3025(Part-47)1994 RA 2019	0.01(max)	< 0.01
37	Selenium as Se	mg/l	IS 3025(Part-56)2003 RA 2019	0.01(max)	< 0.001
38	Nickel	mg/l	IS 3025(Part-54)2003 RA 2019	0.02(max)	< 0.01+
39	Zinc as Zn	mg/l	IS 3025(Part-49)1994 RA 2019	5 (max)	0.06
40	Cadmium as Cd	mg/l	1S 3025(Part-41)1992 RA 2019	0.003(max)	0.001
41	Mercury as Hg	mg/l	IS 3025(Part 48) 1994 RA 2009	0.001(max)	<0.001
42	Anionic detergent as MBAS	mg/l	Annex K of IS 13428	0.2(max)	<0.2
Bacte	eriological Quality		1		
43	Total Coliform Bacteria	MPN/100ml	IS 1622:1981 RA 2019	Shall not be detected in any 100 ml sample	< 2
			-END OF REPORT-	L	-

GLOBA FORMERLY	AL TECH ENVIRO EXPERT: GLOBAL EXPERTS) NR Confilled Company	S PVT. L	TD.	Bhutaneswer-751014 Ph.: 0674-2436853 Fax:- 0674-2435857 E-mail- globalenpertag entaglobalenpertag entaglobalenpertag	Bredittinali.com Øwnel.com cherweigt.com
GTEEPI	L/LQR/56	TEST	REPORT	<i>.</i>	m
NABL UI	LR NO : TC10101220	00000203P		2	R
Report N Name of 1 Address Date of S Date of T Sampling Identifica Quantity	o. : GTEEPL/09 the Client : Raikela Irou : Raikela, Koi ampling : 06.09.2022 testing : 08.09.2022 to to atom : Tensa Tube ttion of Sample : Ground Wat of Sample : 1LTR X 2	/22/GW/203 a Ore Mine ra, Sundary 5 14.09.2023 Well ter	G Issue s of M/s Geetarani Mohanty garh, Odisha, Date	Date: 07.10.2022 TC- of Receiving: 07.09.202	10101
Sampling SI. No.	procedure : GTEEPLALS	Unit	Testing Method	Requirement as per IS 10500:2012RA 2018	Analysis Result
Physical	Parameters				
1	pH	1111	1S 3025(Part-11)1983 RA 2017	7 6.5 to 8.5	6,81
2	Odour		IS 3025(Part 5) 2018	Agreeable	Agreeable
3	Colour	Hazen	IS 3025(Part 4) 2021	5(max)	<1.0
4	Electrical Conductivity	µs/cm	1S 3025(Part-14) :2021		178
5	Total Dissolved solids	mg/l	1S 3025(Part-16)1984 RA 201	7 500 (max)	104
6	Total Suspended Solids	mg/l	IS 3025(Part-17):1984 RA 201	7	<1.0
7	Turbidity	NTU	IS 3025(Part-10)1984 RA 201	7 1.0(max)	<0.5
Chemic	al Parameters				
8	Total Hardness as CaCo ₃	mg/l	1S 3025(Part-21)2009 RA 201	9 200(max)	54.6
9	Calcium Hardness as CaCO3	mg/l	IS 3025(Part-40)1991 RA 2019		36.7
10	Magnesium Hardness as CaCO3	mg/l	IS 3025(Part-46)1994 RA 2003		17.9
11	Total Alkalinity as CaCo3	mg/l	IS 3025(Part-23) 1986 RA 201	9 200(max)	41.8
12	Calcium as Ca	mg/l	1S 3025 (Part-40) 1991 RA 20	9 75(max)	14.72
13	Magnesium as Mg	mg/l	APHA 3500Mg B	30(max)	4.35
14	Chloride as Cl	mg/l	IS 3025(Part-32)1988 RA 201	9 250(max)	22.2
15	Sulphate as SO4	mg/l	IS 3025(Part-24)1986 RA 201	9 200(max)	16.8
16	Fluoride as F	mg/l	APHA F 4500 C-D	1.0(max)	0.39
17	Nitrate as NO3	mg/l	APHA 4500 NO3-B	45(max)	3.7
18	Total Ammonia	mg/l	IS 3025(Part-34)1988RA2019	0.5(max)	<0,3
19	Free Residual Chlorine	mg/l	IS 3025: (Part-26) 2021	0.2(min)	<0.1
20	Mineral Oil	mg/l	IS 3025(Part-39) 2021	0.5(max)	<0.4
21	Iron as Fe	mg/l	IS 3025(Part-53)2003 RA 201	9 1.0(max)	0.58
22	Hexavalent Chromium as Cr ⁺⁶	mg/l	IS 3025(Part-52)2003 RA 201	9	<0.01

GLOBAL TECH ENVIRO EXPERTS PVT. LTD. (FORMERLY GLOBAL EXPERTS) An ISO-9001-2008 Card/Fed Company

And the second second

C 23, BiB Neger, Bhubaneswar 751014 Phubaneswar 751014 Phubaneswar 751014 Phubaneswar 751014 Family applications globalesperingfreed fitnal core estitute: www.globalesperingfreed fitnal core estitute: www.globalesperingfreed

Report No: GTEEPL/09/22/GW/203G

21					
43	Phosphate as PO4	mg/l	APHA 23 rd Ed (4500-P-D): 2017		<0.1
24	Silica	mg/l	APHA 23rd Ed (4500-SiO2-C): 2017		<0.4
25	Sodium as Na	mg/l	IS 3025: (Part-45) 1993 RA 2019		18.6
26	Potassium as K	mg/l	IS 3025. (Part-45) 1993 RA 2019		6.2
27	Total Chromium as	mg/l	IS 3025(Part-52) 2003 RA 2009	0.05(max)	< 0.01
28	Phenolic Compounds as C ₆ H ₃ OH	mg/l	IS 3025(Part-43)1992 RA 2019	0.001 (max)	<0.001
29	Sulphide as H2S	mg/l	IS 3025(Part-29)1986 RA 2019	0.05(max)	<0.05
30	Aluminium as Al	mg/l	IS 3025(Part-55)2003 RA 2019	0.03 (max)	< 0.02
31	Boron as B	mg/l	IS 3025(Part-57)2005 RA 2017	0.5 (max)	<0.1
32	Cyanide as CN	mg/l	1S 3025(Part-27)1986 RA 2019	0.05(max.)	< 0.01
33	Arsenic as As	mg/l	IS 3025(Part-37)1988 RA 2019	0.01(max)	<0.01
34	Copper as Cu	mg/l	IS 3025(Part-42)1992 RA 2019	0.05(max)	< 0.01
35	Manganese as Mn	mg/l	IS 3025(Part-59)2006 RA 2017	0.1(max)	≤0.05
36	Lead as Pb	mg/l	IS 3025(Part-47)1994 RA 2019	0.01(max)	< 0.01
37	Selenium as Se	mg/l	IS 3025(Part-56)2003 RA 2019	0.01(max)	<0.00]
38	Nickel	mg/l	IS 3025(Part-54)2003 RA 2019	0.02(max)	< 0.01
39	Zinc as Zn	mg/l	IS 3025(Part-49)1994 RA 2019	5 (max)	0.05
40	Cadmium as Cd	mg/l	IS 3025(Part-41)1992 RA 2019	0.003(max)	0.001
41	Mercury as Hg	mg/l	1S 3025(Part 48) 1994 RA 2009	0.001(max)	< 0.001
42	Anionic detergent as MBAS	mg/l	Annex K of IS 13428	0.2(max)	<0.2
Bact	eriological Quality			ALC: A LOUISING	
43	Total Coliform Bacteria	MPN/100ml	1S 1622:1981 RA 2019	Shall not be detected in any 100 ml sample	< 2
			-END OF REPORT-	1	
43	Total Coliform Bacteria	MPN/100ml	IS 1622:1981 RA 2019 -END OF REPORT-	detected in any 100 mi sample	<2
			-	Anthorised Sign	atory
			Globa	Tech Enviro Expe	rts Pvt. Ltd
					UNRO EX

GLOB/ (FORIMERLY In 150-9001.2	AL TECH ENVIRO EXPERT (GLOBAL EXPERTS) (GR Cartified Compony)	S PVT. I	.TD.	Bhubaneswar 751014 Ph.: 0674-2436853 Fex: 0674-2438487 E-mail: globalespents@ globalescents@ vist us: www.globaltec	Indiffmall.com Øranuel.com hanvespt.com
GTEEP	L/LQR/56	TEST F	REPORT		
NABL U Report N Name of Address Date of S Date of T Sampling Identific: Quantity Sampling	LR NO : TC10101220 fo. : GTEEPL/09 the Client : Raikela Iro : Raikela, Koi : ampling : 06.09.2022 festing : 08.09.2022 o g Location : Tentulidihi J ation of Sample : Ground Wa of Sample : ILTR X 2 g procedure : GTEEPL/LS	000000203P //22/GW/20 n Ore Mine ira, Sundar o 14.09.202 Dug Well ter OP/09	3H Issue Da es of M/s Geetarani Mohanty garh, Odisha, Date of 2	te: 07.10.2022 rc.4	22 2
SI. No.	Parameters	Unit	Testing Method	Requirement as per IS 10500:2012RA 2018	Analysis Result
Physical	Parameters				
1	pH	0.000001	IS 3025(Part-11)1983 RA 2017	6.5 to 8.5	6.58
2	Odour	9226	IS 3025(Part 5) 2018	Agreeable	Agreeable
3	Colour	Hazen	IS 3025(Part 4) 2021	5(max)	<1.0
4	Electrical Conductivity	µs/cm	IS 3025(Part-14) :2021	1110	95
5	Total Dissolved solids	mg/l	IS 3025(Part-16)1984 RA 2017	500 (max)	57
5	Total Suspended Solids	mg/l	IS 3025(Part-17):1984 RA 2017		<1.0
7	Turbidity	NTU	IS 3025(Part-10)1984 RA 2017	1.0(max)	<0.5
Chemic	al Parameters				
8	Total Hardness as CaCo3	mg/l	IS 3025(Part-21)2009 RA 2019	200(max)	45.6
9	Calcium Hardness as CaCO3	mg/l	IS 3025(Part-40)1991 RA 2019		29.6
10	Magnesium Hardness as CaCO3	mg/l	IS 3025(Part-46)1994 RA 2003		15
11	Total Alkalinity as CaCo3	mg/l	1S 3025(Part-23) 1986 RA 2019	200(max)	28.4
12	Calcium as Ca	mg/l	IS 3025 (Part-40) 1991 RA 2019	75(max)	11.87
13	Magnesium as Mg	mg/l	APHA 3500Mg B	30(max)	3.65
14	Chloride as Cl	mg/l	IS 3025(Part-32)1988 RA 2019	250(max)	11.9
15	Sulphate as SO4	mg/l	IS 3025(Part-24)1986 RA 2019	200(max)	26.2
16	Fluoride as F	mg/l	APHA F 4500 C-D	1.0(max)	0.17
17	Nitrate as NO3	mg/l	APHA 4500 NO3-B	45(max)	4.5
18	Total Ammonia	mg/l	IS 3025(Part-34)1988RA2019	0.5(max)	<0.3
19	Free Residual Chlorine	mg/l	IS 3025: (Part-26) 2021	0.2(min)	<0.1
20	Mineral Oil	mg/l	IS 3025(Part-39) 2021	0.5(max)	0.3
21	Iron as Fe	mg/l	IS 3025(Part-53)2003 RA 2019	1.0(max)	0.21
22	Heyavalent Chromium as Crif	mail	15 3025(Part 52)2003 PA 2010		<0.01

(FORMERLY GLOBAL EXPERTS) An ISO-9072:2008 Certified Company C-23, B2B Report Bhutanessen 731024 Phil. (263-2418033) Fax: (263-2438487 E-Inail: globalespecta@mediffruil.com globalespecta@medifical visitius: www.globaltecheroseqt.com

Report No: GTEEPL/09/22/GW/203H

23 Pho 24 Silic 25 Sod 26 Pota 27 Tota 28 C6H 29 Sulp 30 Alu 31 Bor	ca lium as Na assium as K al Chromium as molic Compounds as 13OH phide as H ₂ S	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	APHA 23rd Ed (4500-SiO ₂ -C): 2017 IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009	 0.05(max)	<0.4 13.7 3.8
24 Since 25 Sod 26 Pote 27 Tota 28 Phee C6H Sulp 30 Alue 31 Bor	ca lium as Na assium as K al Chromium as molic Compounds as H ₃ OH phide as H ₂ S	mg/l mg/l mg/l mg/l	IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-52) 2003 RA 2009	 0.05(max)	13.7 3.8
25 Sod 26 Pota 27 Tota 28 Phe C6H 29 Sulj 30 Alu 31 Bor	lium as Na assium as K al Chromium as molic Compounds as H ₃ OH phide as H ₂ S	mg/l mg/l mg/l	IS 3025: (Part-45) 1993 RA 2019 IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009	0.05(max)	3.8
26 Pota 27 Tota 28 Phe C6H C6H 29 Sulp 30 Alu 31 Bor	assium as K al Chromium as molic Compounds as I ₃ OH phide as H ₂ S	mg/l mg/l	IS 3025: (Part-45) 1993 RA 2019 IS 3025(Part-52) 2003 RA 2009	0.05(max)	3.8
27 Tota 28 Phenometry 29 Sulp 30 Alue 31 Borr	al Chromium as enolic Compounds as 1 ₃ OH phide as H ₂ S	mg/l mg/l	IS 3025(Part-52) 2003 RA 2009	0.05(max)	
28 Phe C ₆ H 29 Sulp 30 Alu 31 Bor	nolic Compounds as 13OH phide as H2S	mg/l			<0.01
29 Sulj 30 Alu 31 Bor	phide as H ₂ S		IS 3025(Part-43)1992 RA 2019	0.001 (max)	< 0.001
30 Alu 31 Bor		mg/l	IS 3025(Part-29)1986 RA 2019	0.05(max)	< 0.05
11 Bor	iminium as Al	mg/l	1S 3025(Part-55)2003 RA 2019	0.03 (max)	< 0.02
	ron as B	mg/l	IS 3025(Part-57)2005 RA 2017	0.5 (max)	<0.1
32 Cya	anide as CN	mg/l	IS 3025(Part-27)1986 RA 2019	0.05(max.)	< 0.01
33 Ars	enic as As	mg/l	IS 3025(Part-37)1988 RA 2019	0.01(max)	<0.01
34 Cop	pper as Cu	mg/l	IS 3025(Part-42)1992 RA 2019	0.05(max)	< 0.01
35 Mai	nganese as Mn	mg/l	IS 3025(Part-59)2006 RA 2017	0.1(max)	<0.05
36 Lea	ad as Pb	mg/l	IS 3025(Part-47)1994 RA 2019	0.01(max)	<0.01
37 Sele	enium as Se	mg/l	1S 3025(Part-56)2003 RA 2019	0.01(max)	< 0.001
38 Nic	kel	mg/l	IS 3025(Part-54)2003 RA 2019	0.02(max)	<0.01*
39 Zin	nc as Zn	mg/l	IS 3025(Part-49)1994 RA 2019	5 (max)	< 0.05
40 Cad	dmium as Cd	mg/l	IS 3025(Part-41)1992 RA 2019	0.003(max)	0.001
41 Me	rcury as Hg	mg/l	IS 3025(Part 48) 1994 RA 2009	0.001(max)	<0,001
42 Ani	ionic detergent as MBAS	mg/l	Annex K of IS 13428	0.2(max)	<0.2
Bacteriolo	ogical Quality		1		
43 Tot	tal Coliform Bacteria	MPN/100ml	IS 1622:1981 RA 2019	Shall not be detected in any 100 ml sample	<2
			-END OF REPORT-		

RAIKELA IRON ORE MINES OF M/S GEETARANI MOHANTY (Pre-Monsoom)									
PIEZOMETRIC DATA OF MAY-2022									
DATA	TIME	Ground Water Level (m)	Water Temprature (degC)	Barometric Pressure (hPa)					
	06.00 AM	10.67	25.06	93.674					
01 05 2022	12.00 PM	10.69	25.01	93.683					
01-05-2022	06.00 PM	10.42	25.08	94.685					
	00.00 AM	10.12	25.01	92.54					
	06.00 AM	10.69	25.52	93.775					
02 05 2022	12.00 PM	10.68	25.42	93.717					
02-03-2022	06.00 PM	10.71	25.24	93.70					
	00.00 AM	10.31	26.36	93.699					
	06.00 AM	10.84	25.3	93.723					
02 05 2022	12.00 PM	10.73	25.08	93.71					
03-03-2022	06.00 PM	10.84	25.09	94.287					
	00.00 AM	10.42	25.05	92.358					
	06.00 AM	10.24	25.42	93.966					
04 05 2022	12.00 PM	10.69	25.01	93.962					
04-03-2022	06.00 PM	10.42	25.36	95.424					
	00.00 AM	10.71	25.61	93.90					
	06.00 AM	10.83	25.59	93.823					
05 05 2022	12.00 PM	10.64	25.23	93.249					
03-03-2022	06.00 PM	10.75	25.06	93.90					
	00.00 AM	10.80	25.11	93.809					
	06.00 AM	10.65	25.41	93.73					
06.05.2022	12.00 PM	10.82	25.52	93.82					
00-03-2022	06.00 PM	10.78	25.24	93.68					
	00.00 AM	10.62	25.41	93.48					
	06.00 AM	10.19	25.32	93.856					
07 05 2022	12.00 PM	10.55	25.18	93.829					
07-03-2022	06.00 PM	10.75	25.15	93.885					
	00.00 AM	10.42	25.01	94.287					
	06.00 AM	10.3	25.11	94.30					
08 05 2022	12.00 PM	10.36	25.41	94.28					
00-03-2022	06.00 PM	10.01	25.42	94.36					
	00.00 AM	10.67	25.27	94.33					
	06.00 AM	10.22	25.75	93.51					
00.05.2022	12.00 PM	10	25.98	93.63					
09-03-2022	06.00 PM	10.75	25.01	93.69					
	00.00 AM	10.72	25.61	93.73					
10-05-2022	06.00 AM	10.16	25.08	94.30					

Annexure 5: Groundwater Level monitoring data of Pre-monsoon and Post Monsoon in Mining Lease Area

	12.00 PM	10.36	25.41	94.27
	06.00 PM	10.76	25.01	93.62
	00.00 AM	10.72	25.41	93.63
	06.00 AM	10.76	25.01	93.69
11.05.2022	12.00 PM	10.76	25.06	93.73
11-03-2022	06.00 PM	10.48	25.43	93.43
	00.00 AM	10.48	25.05	92.59
	06.00 AM	10.78	25.33	93.68
12 05 2022	12.00 PM	10.77	25.01	93.67
12-03-2022	06.00 PM	10.81	25.70	93.43
	00.00 AM	10.47	25.31	93.43
	06.00 AM	10.73	25.42	93.50
12 05 2022	12.00 PM	10.83	25.52	93.46
13-03-2022	06.00 PM	10.52	25.33	93.43
	00.00 AM	10.63	25.34	93.43
	06.00 AM	10.48	25.42	93.46
14 05 2022	12.00 PM	10.63	25.51	93.64
14-03-2022	06.00 PM	10.87	25.42	93.35
	00.00 AM	10.52	25.34	93.39
	06.00 AM	10.63	25.34	93.45
15 05 2022	12.00 PM	10.87	25.24	93.62
13-03-2022	06.00 PM	10.60	25.24	93.47
	00.00 AM	10.51	25.42	93.44
	06.00 AM	10.50	25.23	93.62
16-05-2022	12.00 PM	10.84	25.24	93.70
10-03-2022	06.00 PM	10.61	25.34	93.64
	00.00 AM	10.52	25.70	93.67
	06.00 AM	10.61	25.42	93.63
17-05-2022	12.00 PM	10.83	25.61	93.63
17-05-2022	06.00 PM	10.85	26.07	93.35
	00.00 AM	10.25	25.60	93.34
	06.00 AM	10.89	25.01	93.69
18-05-2022	12.00 PM	10.88	25.44	93.73
10 00 2022	06.00 PM	10.89	25.01	93.53
	00.00 AM	10.93	25.01	93.63
	06.00 AM	10.78	25.01	93.46
19-05-2022	12.00 PM	10.89	25.58	93.57
19 03 2022	06.00 PM	10.88	25.44	93.57
	00.00 AM	10.79	25.01	93.46
	06.00 AM	10.76	25.01	93.46
20-05-2022	12.00 PM	10.86	26.26	93.47
20 00 2022	06.00 PM	10.25	25.01	93.45
	00.00 AM	10.28	25.42	94.32
21-05-2022	06.00 AM	10.48	25.33	93.43
1. 00 2022	12.00 PM	10.87	26.07	93.45

	06.00 PM	10.50	25.60	93.23
	00.00 AM	10.25	25.42	93.23
	06.00 AM	10.74	25.52	93.36
22.05.2022	12.00 PM	10.79	25.01	93.63
22-05-2022	06.00 PM	10.80	25.61	93.00
	00.00 AM	10.74	25.61	93.02
	06.00 AM	10.82	25.42	93.13
22.05.2022	12.00 PM	10.81	25.89	93.91
23-05-2022	06.00 PM	10.25	25.41	93.92
	00.00 AM	10.17	25.60	93.90
	06.00 AM	10.67	25.39	93.85
24.05.2022	12.00 PM	10.88	25.01	93.59
24-05-2022	06.00 PM	10.81	25.01	93.56
	00.00 AM	10.61	25.01	93.54
	06.00 AM	10.81	25.42	93.84
25-05-2022	12.00 PM	10.81	25.42	93.76
	06.00 PM	10.25	25.62	93.55
	00.00 AM	10.05	25.42	93.56
	06.00 AM	10.90	25.70	93.74
	12.00 PM	10.88	25.42	93.58
26-05-2022	06.00 PM	10.89	25.42	93.58
	00.00 AM	10.82	25.01	93.59
	06.00 AM	10.8	25.01	93.57
27.05.2022	12.00 PM	10.81	25.01	93.56
27-05-2022	06.00 PM	10.18	25.52	93.40
	00.00 AM	10.73	25.05	93.44
	06.00 AM	10.39	25.02	93.41
28.05.2022	12.00 PM	10.84	25.01	93.50
28-05-2022	06.00 PM	10.85	25.01	93.27
	00.00 AM	10.93	25.01	93.40
	06.00 AM	10.74	25.06	93.39
20.05.2022	12.00 PM	10.88	25.01	93.42
29-03-2022	06.00 PM	10.47	25.02	93.41
	00.00 AM	10.42	25.42	93.46
	06.00 AM	10.74	25.44	93.44
20 05 2022	12.00 PM	10.88	25.01	93.64
30-03-2022	06.00 PM	10.81	25.11	93.68
	00.00 AM	10.25	25.18	93.68
	06.00 AM	10.75	25.01	93.67
21 05 2022	12.00 PM	10.89	25.51	93.38
31-03-2022	06.00 PM	10.78	25.01	93.68
	00.00 AM	10.87	25.02	

RAIKELA I	RON ORE MINE	ES OF M/S G	EETARANI MO	OHANTY
	PIEZOMETRIC	DATA OF A	UGUST 2022	

DATA	TIME	Ground Water Level (m)
	06.00 AM	5.04
01.08.2022	12.00 PM	5.11
01-08-2022	06.00 PM	5.15
	00.00 AM	5.22
	06.00 AM	5.29
02 08 2022	12.00 PM	5.40
02-08-2022	06.00 PM	5.05
	00.00 AM	5.02
	06.00 AM	5.08
02.08.2022	12.00 PM	5.07
03-08-2022	06.00 PM	5.14
	00.00 AM	5.16
	06.00 AM	5.10
04.08.2022	12.00 PM	5.20
04-08-2022	06.00 PM	5.03
	00.00 AM	5.08
	06.00 AM	4.99
05 08 2022	12.00 PM	5.01
05-08-2022	06.00 PM	4.99
	00.00 AM	5.26
	06.00 AM	5.00
06 08 2022	12.00 PM	5.02
00-08-2022	06.00 PM	5.04
	00.00 AM	5.01
	06.00 AM	5.13
07 08 2022	12.00 PM	5.02
07-08-2022	06.00 PM	5.07
	00.00 AM	5.09
	06.00 AM	5.05
08 08 2022	12.00 PM	5.09
08-08-2022	06.00 PM	5.12
	00.00 AM	5.06
	06.00 AM	5.08
00 08 2022	12.00 PM	5.12
09-08-2022	06.00 PM	5.18
	00.00 AM	5.13
	06.00 AM	5.06
10-08 2022	12.00 PM	5.07
10-00-2022	06.00 PM	5.11
	00.00 AM	5.13
11-08-2022	06.00 AM	5.01

	12.00 PM	5.05
	06.00 PM	5.08
	00.00 AM	5.26
	06.00 AM	5.11
12 08 2022	12.00 PM	5.07
12-08-2022	06.00 PM	5.10
	00.00 AM	5.01
	06.00 AM	5.03
12 08 2022	12.00 PM	5.11
13-08-2022	06.00 PM	5.12
	00.00 AM	5.15
	06.00 AM	5.09
14 08 2022	12.00 PM	5.05
14-08-2022	06.00 PM	5.13
	00.00 AM	5.02
	06.00 AM	5.04
15 08 2022	12.00 PM	5.10
13-08-2022	06.00 PM	5.14
	00.00 AM	5.12
	06.00 AM	5.09
16 09 2022	12.00 PM	5.10
10-08-2022	06.00 PM	5.21
	00.00 AM	5.13
	06.00 AM	5.10
17-08-2022	12.00 PM	5.15
17-00-2022	06.00 PM	5.13
	00.00 AM	5.11
	06.00 AM	5.11
18-08-2022	12.00 PM	5.13
10-00-2022	06.00 PM	5.10
	00.00 AM	5.11
	06.00 AM	5.10
19-08-2022	12.00 PM	5.14
19 00 2022	06.00 PM	5.21
	00.00 AM	5.34
	06.00 AM	5.15
20-08-2022	12.00 PM	5.20
20 00 2022	06.00 PM	5.18
	00.00 AM	5.13
	06.00 AM	5.08
21-08-2022	12.00 PM	5.18
21 00 2022	06.00 PM	5.18
	00.00 AM	5.09
22-08-2022	06.00 AM	5.09
<u></u>	12.00 PM	5.13

	06.00 PM	5.04
	00.00 AM	5.11
	06.00 AM	5.25
23-08-2022	12.00 PM	5.38
23-00-2022	06.00 PM	5.03
	00.00 AM	5.09
	06.00 AM	5.04
24-08-2022	12.00 PM	5.40
24-00-2022	06.00 PM	5.28
23-08-2022 24-08-2022 25-08-2022 26-08-2022 27-08-2022 28-08-2022 29-08-2022 30-08-2022	00.00 AM	5.37
	06.00 AM	5.14
25 08 2022	12.00 PM	5.34
25-08-2022	06.00 PM	5.25
	00.00 AM	5.17
	06.00 AM	5.15
26 08 2022	12.00 PM	5.25
26-08-2022	06.00 PM	5.28
	00.00 AM	5.23
	06.00 AM	5.20
27-08-2022	12.00 PM	5.26
27-00-2022	06.00 PM	5.27
25-08-2022 26-08-2022 27-08-2022 28-08-2022 29-08-2022	00.00 AM	5.39
	06.00 AM	5.16
28-08-2022	12.00 PM	5.35
20-00-2022	06.00 PM	5.32
	00.00 AM	5.38
	06.00 AM	5.14
29-08-2022	12.00 PM	5.33
29-00-2022	06.00 PM	5.28
	00.00 AM	5.37
	06.00 AM	5.24
27-08-2022 28-08-2022 29-08-2022 30-08-2022	12.00 PM	5.28
	06.00 PM	5.31
	00.00 AM	5.40
	06.00 AM	5.25
30-08-2022	12.00 PM	5.29
	06.00 PM	5.30
	00.00 AM	5.41

RAIKELA IRON ORE MINES OF M/S GEETARANI MOHANTY PIEZOMETRIC DATA OF SEPTEMBER 2022			
DATA	TIME	Ground Water Level (m)	

	06.00 AM	5.21
01 00 2022	12.00 PM	5.23
01-09-2022	06.00 PM	5.35
	00.00 AM	5.32
	06.00 AM	5.41
02 00 2022	12.00 PM	5.33
02-09-2022	06.00 PM	5.35
	00.00 AM	5.12
	06.00 AM	5.36
02 00 2022	12.00 PM	5.25
03-09-2022	06.00 PM	5.29
	00.00 AM	5.34
	06.00 AM	5.14
04 00 2022	12.00 PM	5.45
04-09-2022	06.00 PM	5.20
	00.00 AM	5.49
	06.00 AM	5.32
05 00 2022	12.00 PM	5.40
03-09-2022	06.00 PM	5.42
	00.00 AM	5.33
05-09-2022 06-09-2022 07-09-2022	06.00 AM	5.32
	12.00 PM	5.4
00-09-2022	06.00 PM	5.42
	00.00 AM	5.33
	06.00 AM	5.08
07-09-2022	12.00 PM	5.4
07 09 2022	06.00 PM	5.42
	00.00 AM	5.33
	06.00 AM	5.52
08-09-2022	12.00 PM	5.48
00 09 2022	06.00 PM	5.43
	00.00 AM	5.39
	06.00 AM	5.37
09-09-2022	12.00 PM	5.46
07 07 2022	06.00 PM	5.61
	00.00 AM	5.39
	06.00 AM	5.39
10-09-2022	12.00 PM	5.48
	06.00 PM	5.59
	00.00 AM	5.39
	06.00 AM	5.33
02-09-2022 03-09-2022 04-09-2022 05-09-2022 06-09-2022 07-09-2022 08-09-2022 10-09-2022 11-09-2022	12.00 PM	5.52
11 09 2022	06.00 PM	5.4
	00.00 AM	5.29
12-09-2022	06.00 AM	5.44

	12.00 PM	5.48
	06.00 PM	5.32
	00.00 AM	5.49
	06.00 AM	5.45
12 00 2022	12.00 PM	5.32
13-09-2022	06.00 PM	5.43
	00.00 AM	5.51
	06.00 AM	5.39
14 00 2022	12.00 PM	5.56
14-09-2022	06.00 PM	5.59
	00.00 AM	5.39
	06.00 AM	5.42
15 00 2022	12.00 PM	5.58
13-09-2022	06.00 PM	5.65
	00.00 AM	5.41
	06.00 AM	5.56
16 00 2022	12.00 PM	5.66
10-09-2022	06.00 PM	5.65
	00.00 AM	5.41
	06.00 AM	5.58
17 09 2022	12.00 PM	5.63
17-09-2022	06.00 PM	5.62
	00.00 AM	5.61
	06.00 AM	5.43
18-09-2022	12.00 PM	5.32
10-07-2022	06.00 PM	5.65
	00.00 AM	5.53
	06.00 AM	5.59
19-09-2022	12.00 PM	5.63
19 09 2022	06.00 PM	5.68
	00.00 AM	5.42
	06.00 AM	5.27
20-09-2022	12.00 PM	5.66
20 09 2022	06.00 PM	5.68
	00.00 AM	5.66
	06.00 AM	5.62
21-09-2022	12.00 PM	5.25
21 09 2022	06.00 PM	5.58
	00.00 AM	5.53
	06.00 AM	5.54
22-09-2022	12.00 PM	5.59
	06.00 PM	5.62
	00.00 AM	5.87
23-09-2022	06.00 AM	5.42

	06.00 PM	5.59
	00.00 AM	5.81
	06.00 AM	5.62
24 00 2022	12.00 PM	5.38
24-09-2022	06.00 PM	5.54
	00.00 AM	5.50
	06.00 AM	5.41
25 00 2022	12.00 PM	5.83
23-09-2022	06.00 PM	5.50
	00.00 AM	5.77
	06.00 AM	5.59
26 00 2022	12.00 PM	5.69
20-09-2022	06.00 PM	5.61
24-09-2022 25-09-2022 26-09-2022 27-09-2022 28-09-2022 29-09-2022 30-09-2022	00.00 AM	5.67
	06.00 AM	5.56
27 00 2022	12.00 PM	5.49
27-09-2022	06.00 PM	5.67
	00.00 AM	5.35
	06.00 AM	5.6
20 00 2022	12.00 PM	5.61
28-09-2022	06.00 PM	5.75
	00.00 AM	5.61
	06.00 AM	5.64
24-09-2022 25-09-2022 26-09-2022 27-09-2022 28-09-2022 29-09-2022 30-09-2022	12.00 PM	5.72
	06.00 PM	5.60
	00.00 AM	5.43
	06.00 AM	5.59
20.00.2022	12.00 PM	5.69
50-09-2022	06.00 PM	5.56
	00.00 AM	5.08

RAIKELA IRON ORE MINES OF M/S GEETARANI MOHANTY PIEZOMETRIC DATA OF OCTOBER 2022

DATA	TIME	Ground Water Level (m)	
	06.00 AM	5.08	
01 10 2022	12.00 PM	5.52	
01-10-2022	06.00 PM	5.5	
	00.00 AM	5.8	
	06.00 AM	5.8	
02 10 2022	12.00 PM	6.0	
02-10-2022	06.00 PM	6.01	
	00.00 AM	6.01	
	06.00 AM	6.02	
02 10 2022	12.00 PM	6.4	
03-10-2022	06.00 PM	6.6	
	00.00 AM	6.6	
	06.00 AM	6.8	
04.10.0000	12.00 PM	6.9	
04-10-2022	06.00 PM	7.0	
	00.00 AM	7.01	
	06.00 AM	7.02	
05 10 2022	12.00 PM	7.3	
05-10-2022	06.00 PM	7.4	
	DATA TIME Ground water Level (m) 06.00 AM 5.08 12.00 PM 5.52 06.00 AM 5.8 00.00 AM 5.8 00.00 AM 5.8 01.02022 06.00 PM 06.00 AM 5.8 01.02022 06.00 AM 06.00 AM 6.01 00.00 AM 6.01 00.00 AM 6.02 12.00 PM 6.4 06.00 AM 6.6 00.00 AM 6.6 00.00 AM 6.6 00.00 AM 6.6 00.00 AM 6.8 12.00 PM 6.9 06.00 AM 7.0 00.00 AM 7.0 00.00 AM 7.0 00.00 AM 7.0 00.00 AM 7.3 06.00 PM 7.4 00.00 AM 7.8 10.2022 06.00 PM 7.8 00.00 AM 7.9 00.00 AM 8.0 10.2022 06.00 A	7.5	
	06.00 AM	7.8	
06 10 2022	12.00 PM	7.8	
01-10-2022 02-10-2022 03-10-2022 04-10-2022 05-10-2022 06-10-2022 08-10-2022 09-10-2022 10-10-2022	06.00 PM	7.9	
	00.00 AM	7.9	
	06.00 AM	8.01	
07 10 2022	12.00 PM	8.02	
07-10-2022	06.00 PM	8.5	
	00.00 AM	8.6	
	06.00 AM	8.5	
08 10 2022	12.00 PM	8.4	
08-10-2022	06.00 PM	8.8	
	00.00 AM	9.1	
	06.00 AM	9.2	
00 10 2022	12.00 PM	9.01	
09-10-2022	06.00 PM	9.05	
	00.00 AM	9.4	
	06.00 AM	9.5	
10 10 2022	12.00 PM	9.6	
10-10-2022	06.00 PM	9.5	
	00.00 AM	9.6	
	06.00 AM	9.8	
11-10-2022	12.00 PM	9.9	
	06.00 PM	9.7	

	00.00 AM	9.8
	06.00 AM	9.9
12 10 2022	12.00 PM	9.7
12-10-2022	06.00 PM	10
	00.00 AM	10.02
	06.00 AM	10.05
13 10 2022	12.00 PM	10.11
13-10-2022	06.00 PM	10.2
	00.00 AM	10.3
	06.00 AM	10.5
14 10 2022	12.00 PM	10.4
14-10-2022	06.00 PM	10.2
	00.00 AM	10.01
	06.00 AM	10.4
15 10 2022	12.00 PM	10.3
13-10-2022	06.00 PM	10.60
	00.00 AM	10.51
	06.00 AM	10.50
16 10 2022	12.00 PM	10.84
16-10-2022	06.00 PM	10.61
	00.00 AM	10.52
	06.00 AM	10.61
16-10-2022 17-10-2022 18-10-2022	12.00 PM	10.83
17-10-2022	06.00 PM	10.85
	00.00 AM	10.25
	06.00 AM	10.89
18-10-2022	12.00 PM	10.88
10-10-2022	06.00 PM	10.89
	00.00 AM	10.93
	06.00 AM	10.78
10 10 2022	12.00 PM	10.89
17-10-2022	06.00 PM	10.88
$ \begin{array}{c} 12-10-2022 \\ 13-10-2022 \\ 13-10-2022 \\ 14-10-2022 \\ 15-10-2022 \\ 16-10-2022 \\ 18-10-2022 \\ 20-10-2022 \\ 20-10-2022 \\ 22-10-2022 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	00.00 AM	10.79
	06.00 AM	10.76
15-10-2022 16-10-2022 17-10-2022 18-10-2022 19-10-2022 20-10-2022	12.00 PM	10.86
20-10-2022	06.00 PM	10.25
	00.00 AM	10.28
	06.00 AM	10.48
21-10-2022	12.00 PM	10.87
21-10-2022	06.00 PM	10.50
	00.00 AM	10.25
	06.00 AM	10.74
14-10-2022 15-10-2022 16-10-2022 17-10-2022 18-10-2022 20-10-2022 21-10-2022 22-10-2022	12.00 PM	10.79
22 10-2022	06.00 PM	10.80
	00.00 AM	10.74

	06.00 AM	10.82
22 10 2022	12.00 PM	10.81
23-10-2022	06.00 PM	10.25
	00.00 AM	10.17
	06.00 AM	10.67
24 10 2022	12.00 PM	10.88
24-10-2022	06.00 PM	10.81
	00.00 AM	10.61
	06.00 AM	10.81
25 10 2022	12.00 PM	10.81
25-10-2022	06.00 PM	10.25
	00.00 AM	10.05
	06.00 AM	10.90
26 10 2022	12.00 PM	10.88
20-10-2022	06.00 PM	10.89
27 10 2022	00.00 AM	10.82
	06.00 AM	10.8
23-10-2022 24-10-2022 25-10-2022 26-10-2022 28-10-2022 28-10-2022 30-10-2022 31-10-2022	12.00 PM	10.81
	06.00 PM	10.18
	00.00 AM	10.73
	06.00 AM	10.39
28 10 2022	12.00 PM	10.84
28-10-2022	06.00 PM	10.85
	00.00 AM	10.93
	06.00 AM	10.74
20 10 2022	12.00 PM	10.88
29-10-2022	06.00 PM	10.47
	00.00 AM	10.42
	06.00 AM	10.74
20 10 2022	12.00 PM	10.88
30-10-2022	06.00 PM	10.81
	00.00 AM	10.25
	06.00 AM	10.75
21 10 2022	12.00 PM	10.89
51-10-2022	06.00 PM	10.78
	00.00 AM	10.87

3. Impact assessment of mining of Iron ore on Ground Water in & around Dholta Pahar, Sundergarh, Odissa-Click to view the relevant page

Comprehensive Report on:

Groundwater Condition in both core and buffer zone of Dholta Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/S KASHVI POWER AND STEEL PVT LTD PLOT NO 1234/P, GOVINDA PRASAD, BOMIKHAL, BHUBANESWAR- 751006 E-MAIL ID: groupkashvi@gmail.com

Comprehensive Report on: Groundwater Condition in both core and buffer zone of DholtaPaharBlock Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/S KASHVI POWER AND STEEL PVT LTD PLOT NO 1234/P, GOVINDA PRASAD, BOMIKHAL, BHUBANESWAR- 751006 E-MAIL ID: groupkashvi@gmail.com By MRCAWTM – May 2022

Executive summary

M/s Kashvi Power & Steel pvt Ltd is located in Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Dengula village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Kashvi Power & Steel Private Limited operates as a manufacturer of spongeiron, billet and ingots and exporter of minerals. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. During the plan period, it has been proposed to produce 2.0 MTPA iron ore per annum. The present study is made for obtaining NOC from CGWA for extraction of maximum 200KLD groundwater during mining operation as per the approved mine plan. The present report is based on the Hydrogeological investigation made within core zone and its 10km radius buffer zone for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining renewal of NOC. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic. The study area is located in Dengula Village, Koira Tehsil of Sundargarh District, Odisha whichfalls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation name Singbhum-Keonjhar-Bonai group of iron ore of Precambrian age. These constitute hard rock's includes schist, tuffs, phyllite, basic rock, BHQ/BHJ have been classified as Iron Ore Series (IOS). Aquifers are developed only in the low lying area and valley parts of the study area. The total lease area of the proposed Dholtapahar Fe ore block is 60.508 ha (605080 m²). Groundwater quality is fresh and potable in both core and buffer zone area and TDS remains below 1900 ppm varies from 10 to 310 ppm in the study area. As per the approved mine plan the dewatering of groundwater maximum 200KLD as the mine is generating no water discharge and only 97 KLD will be extracted from ground water for mine use. Rainwater is harvested within the ML area through construction of water conservation pond, check dam, and earth bunds. The annual conservation through RWH is about 26500m³/anm. There is no long term impact on groundwater because of open cast mining. For the running of mine 200KLD water is required, 97KLD from ground water and 103 KLD will be purchase from other site. Thus, the study recommends NOC may be provided for next 5 yr with maximum 97 KLD extractions from groundwater.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/S. Kashvi Power and Steel Pvt. Lmt, Odisha is thankfully acknowledged.

Discussions with Mr. Pradeept Mohapatra, Director WCS, regarding the geology of lease area and plan our investigations according to scope of work is gratefully acknowledged. Help rendered by Shri Shubham, Geologist, M/S. Kashvi Power and Steel Pvt. Lmt, Odisha in every stage of planning and Field verification, investigations in and around lease area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records many of them are reproduced in this report and forms part of annexure section.

At lease area, during days of field investigation we have received warm welcome and all hospitality and requisite support from mine team. We thankfully acknowledge Mr. Pradeept Mohapatra, Director WCS and his team for their cooperation.

The report has been prepared by Ms Sheha Rai, Asstt Prof MRCAWTM and Sandeep Kumar Research Assistant, MRCAWTM under the supervision of Prof (Dr) Arunangshu Mukherjee, Director MRCAWTM. Ms Alifia Ibkar, RA MRCAWTM helped Mr Sandeep Kumar in the field work and data collection.

It is to certify that MRCAWTM have investigated the area of Dholtapahar Fe ore block of Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Based on actual data collected from field and literature survey done, has prepared the report as per the format of CGWA.

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies (Deemed to be University under section 3 of the UGC Act, 1956) Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121004

CONTENTS

Executive summary Acknowledgement Format of Report

Sr. NO.	DESCRIPTION	PAGE NO
1.	Introduction	1-8
	1.1 Objective	1
	1.2 Scope of study	3
	1.3 Project description	3
	1.4 Land use and land cover change in the study area	4
	1.5 Topography and drainage	6
2.	Groundwater Situations	8-27
	2.1 Geology and geomorphology	09
	2.2 Climate and Rainfall:	14
	2.3 Groundwater regime monitoring	15
	2.4 Long term groundwater trend	20
	2.5 Groundwater quality	22
3.	Mining Plan	28-38
	3.1 Exploration Plan	31
	3.2 Mineralization details	32
	3.3 Reserve / Resource	32
	3.4 Mining Operation	33
4.	Proposed utilization of water for Mine Operation	39
5.	Comprehensive assessment of the impact on the ground water regime	40-44
	5.1: Impact on surface water sources	41
	5.2: Impact on groundwater sources	41
	5.3 Socio-Economic	44
6.	Proposed measures for disposal of wastewater by mine drawing saline water	46
7.	Water conservation	<u>46- 50</u>
	7.1: Water use and water balance	46
	7.2 Rainwater Harvesting & Artificial recharge	47
	7.3 Monitoring, Measurement and Capacity building	50

LIST OF TABLES

SR. NO.	DESCRIPTION	PAGE NO.
1.1	LULC 2017 of study area	06
1.2	LULC 2021 of study area	06
2.1	Startigraphy of Koira Group in Sundergarh district, Odisha	12
2.2	Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020	14
2.3	Well inventory data of Dug wells of Core and buffer zone of Dholta Pahar Fe ore Mine	17
2.4	Block wise Dynamic Groundwater Resources of Koira block, Sundergarh district, Odisha	21
3.1	Initial/subsequent Lease grant details	28
3.2	Land Ownership Details	28
3.3	Location of Boundary Pillars – (add additional Row for subsequent pillars)	28
3.4	Mining Plan/ Review of Mining Plan at Glance	28
3.5	Threshold value & Cut off Parameters	32
3.6	Mineral Reserve	33
3.7	Mineral Beneficiation / Processing	33
3.8	Tentative Production Summary year wise	34
3.9	Total ROM and waste generation	38
4.1	Proposal of Water Utilization in Dholta Pahar mine	39
5.1	Crop production details of Sundergarh District Odisha in Kharif and Rabi Season	43
5.2	Population data of study area in part of Koida tehsil, Sundergarh district, Odisha	44
7.1	Crop production details of Sundergarh District Odisha in Kharif and Rabi Season	46
7.2	Pond and Water bodies in study area	48

LIST OF FIGURES

Sr. no.	DESCRIPTION	PAGE NO.
1.1	Location Map of Dholta Pahar Fe Ore Mine, Odisha	2
1.2 1.3	Google Image showing Dholtapahar Fe ore location Map showing LULC of Dholtapahar Fe Ore Mine of 10km buffer zone (Jan 2017)	4 5
1.4	Map showing LULC of Dholtapahar Fe Ore Mine of 10km buffer zone (Jan 2021)	5
1.5 1.6	Slope map in 10km buffer zone Topography Map of 10km buffer zone.	7 7
1.7 2.1	Digital elevation map in 10km buffer zone. Schematic diagram of stratigraphic setting of three BIF of IOSG (Beura et al.2016	8 10
2.2	Stratigraphic Succession of Iron Ore Super Group of Odisha (Beura et al.2016)	11
2.3	Geomorphological cum Geology map of Dholtapahar Fe Mine	13
2.4	Hand pump and bore well in core zone of Netrabandha Pahar (west) block	17
2.5	Map showing study area in the state Odisha	18
2.6	DTW map of core and buffer zone.	19
2.7	Groundwater contour map of Dholtapahar mine area	20
2.8	Long term well hydrograph of wells of Sundergarh district, Odisha (source: WRIS portal)	21
2.9	TDS map of Dholtapahar block Fe ore mine	22
2.10 2.11	EC map of Dholtapahar block Fe ore mine Sub-divisions of the diamond field	23 23
2.12	Water Quality Data in Piper Trilinear Diagram in study area	25
2.13	US Salinity diagram , Sundergarh district , Odisha	26
3.1	Drill hole location	31
3.2	Year wise Development section	35
3.3	Five years development Plan	38
5.1	Existing Mine pit within 2 km core zone	41
5.2	Google elevation profile of study area around Dholtapahar Fe ore Mine from three directions	43
7.1	Existing rainwater harvesting pond and mine pit storage tank in study area	48
7.2	Design of proposed rooftop rain water harvesting structure	50

Report on

Hydrogeological Investigation and Impact Assessment Report for Dholtapahar Fe Iron Ore Block, Sundergarh District, Odisha

Introduction

The report is prepared as per the format prescribed by CGWA for impact assessment study, the Introductory chapter comprises the following subtitle for describing its

- 1.1 Objectives
- 1.2 Scope of the study
- 1.3 Project description-Plant, process, product and location
- 1.4 Land Use Land Cover and percentage of LULC categories
- 1.5 Topography and drainage

1.1 Objective

The Central Government had constituted the Central Ground Water Board as Authority vide notification number S.O. 38 (E), dated the 14th January, 1997 to exercise powers under sub section (3) of section 3 of the Environment (Protection) act, 1986 (29 of 1986) for the purposes of regulation and control of Ground Water Management and Development. The Authority has been regulating ground water development and management by the way of issuing 'No Objection Certificates' for ground water extraction to industries or infrastructure projects or Mining Projects etc., and framed and issued guidelines in this connection from time to time. The entire process of grant of No Objection Certificate shall be online through a web based application system. The latest guideline issued by Gazette Notification no 2941 on 24th September 2020 supersedes all earlier guidelines issued by the Central Ground Water Authority (CGWA). As per the CGWA instruction the M/S. Kashvi Power and Steel Pvt. Ltd. has to submit Impact assessment report along with undertaking for processing their application for regularization of groundwater abstraction for mining. There by M/S. Kashvi Power and Steel Pvt. Ltd. Bhubaneswar engaged MRCAWTM, CGWA Accredited Groundwater Institution (Certificate No.-CGWA/RGI/025) vide work order dated 4th April 2022 to carry out the Hydrogeological investigation along with impact assessment study incorporating socio-economic assessment study on groundwater regime due to withdrawal/ dewatering of groundwater by Dholta Pahar Block for Iron Ore mine (Fig 1.1) as per the prescribed format of CGWA.

Fig 1.1: Location Map of Dholta Pahar Fe Ore Mine, Odisha

Hydrogeological Investigation and Impact Assessment Report for Dholta Pahar for Iron Ore, Sundergarh District, Odisha

1.2. Scope of the study

The scope of study includes hydrological study around mine and providing certificated report along with providing guidance on techno-legal aspects and compliance for obtaining NOC for CGWA as per latest guidelines. Detailed hydro geological investigations within core and buffer zones (10km radius study area) of Dholta Pahar Fe Ore Block leased to M/S. M/S. Kashvi Power and Steel Pvt. Ltd. Bhubaneswar and assessment of impact of mining on groundwater regime in the study area which covers parts of Koira Tehsil of Sundergarh district, Odisha. As the mine is generating no water discharge and only 97 KLD will be extracted from ground water for mine use, thus groundwater modeling is not required along with impact assessment report for this case as per the CGWA guideline.

1.3. Project description

M/S. Kashvi Power and Steel Pvt. Ltd, Bhubaneswar is a registered firm under Minerals (Development and Regulation) ACT, 1957 and The Mineral (Auction) Rules, 2015, Govt of Odisha. Dholtapahar Fe Ore Block located in Koira Tehsil of Sundargarh district of Odisha. The IBM company number is IBM/7815/2011. The total lease area of Dholtapahar Fe ore block is 60.508 ha. As part of the statutory clearance, the Mining Plan and Progressive Mine Closure Plan is prepared under Rule 16(1) of MCR, 2016 and Rule 23 of MCDR, 2017 respectively for a period of 5 years from the date of opening of the mine for grant of Mining Lease in favor of M/S. Kashvi Power and Steel Pvt. Ltd. The registered office is situated at State of Maharashtra (Mumbai) having is registered office at 503, 5th floor, Greenland Apartment, Building no.3, JB Nagar, Andheri East, Mumbai- 400059, Maharashtra to carry on all or any of the business as manufacturers, buyers, sellers, suppliers, traders, exporters, minerals, metals etc. M/s Kashvi Power & Steel pvt Ltd is a part of Kashvi group and one of the growing company in Odisha. Kashvi Power & Steel Private Limited operates as a manufacturer of sponge iron, billet and ingots and exporter of minerals. Iron ore produced from the Dholta Pahar block will mostly be utilized in their sponge iron plant. However, as per the market demand, part of the iron ore may be sold to the consumers. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. During the plan period, it has been proposed to produce2.0 MTPA iron ore per annum.

Location

M/s Kashvi Power & Steel pvt Ltd is located in Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Dengula village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Taldihi village is 1.5 km away from the study area. Nearest railway station is Barsuan which is 23 km away from the lease area of mine is not located within 10km radius of National Park /Wild Life

Sanctuary / Protected area and don't falls under Coastal Regulation Zone (CRZ). Many shallow depth open cast pits mine are present in the study area.

Fig 1.2: Google Image showing Dholtapahar mine lease Pillars location

1.4. Land use and Land cover (LULC) change in the study area

The total lease area of the proposed Dholtapahar Fe ore block is 60.508 ha (605080 m²). The mine is situated in outer part of the Dengula village surrounded by hills and forest area. The land use of the mining area is given in Table no 1.1 and the percentage has been represented through a pie diagram in Fig 1.2. The nearest village is Taldihi located 1.5 km away from Dholtapahar Fe ore block. Around 40 villages are located under 10 km radius zone of the study area. (Annexure-1)

Comparison of LULC during 2017 and 2021 within the 10 kms radius of mine area show marginal changes in agriculture use, forest cover, built up area, as shown in figs and tables 1.1 & 1.2, however area under water body has increased from 5.062 ha to 5.900 ha due to accumulation of water into some abandon mine pit sand due to construction of water conservation structures in the area.

Fig 1.3: Map showing LULC of Dholtapahar Fe Ore Mine of 10km buffer zone (Jan 2017)

Hydrogeological Investigation and Impact Assessment Report for Dholta Pahar for Iron Ore, Sundergarh District, Odisha

Table 1.1: LULC 2017 of study area

Table 1.2 LULC 2021 of study area

1.5. Topography and Drainage

Dholtapahar block is a part of Koira group of upper Shale formation. Study area having steep rising hills with intervening steep gorge and narrow valley. The geomorphic sub-units like the pediments, pediplains, buried pediments, valley fills, and lineaments are the predominant in the hard rock areas in study area. The highest elevation is 825m amsl and lowest elevation is 550m amsl (Fig 1.5 &1.6).

Study area is covered with different hills with intervening intermontane valleys, isolated hillocks and flat to gently undulating plains. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi

controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic (Fig: 1.7).

Fig 1.5: Slope map in 10km buffer zone

Hydrogeological Investigation and Impact Assessment Report for Dholta Pahar for Iron Ore, Sundergarh District, Odisha

Fig 1.6: Topography Map of 10km buffer zone.

Fig 1.7: Digital elevation map in 10km buffer zone.

2. Groundwater Situations

Sundergarh district is North Western part of Odisha state. Sundergarh is recognized as an industrial district in the map of Odisha. Steel Plant, Fertilizer plant and Cement factory. Ferro Vanadium Plant. Machine building factory, Glass and China clay factory and Spinning mills are some of the major industry of this district. Large part of the study area belongs to Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Ground water is the main source of drinking as well as industrial and domestic purpose. However, the requirement of water in irrigation and agriculture is fulfilled mainly by river, canals, as well as by rainwater. The rainwater also is the main source for recharge of groundwater of the area. The following major subtopics that are covered in this particular chapter are:

- 2.1 Geology and Geomorphology
- 2.2 Climate and Rainfall pattern
- 2.3 Groundwater regime monitoring
- 2.4. Long term groundwater trend
- 2.4 Groundwater resources
- 2.5 Groundwater quality

2.1 Geology and Geomorphology

2.1.1. Regional Geology

Sundergarh district is rich in Iron ore, limestone, manganese, dolomite, and fire clay. Banded Iron Formation (BIF) and Iron ore deposit occupy three distinct provinces surrounding the North Odisha Iron Ore Craton (NOIOC). They are Bonai-Keonjhar belt in the western side of the Craton, Badampahar Gorumahisani- Suleipat belt in the eastern flank and Daitari-Tomka belt in the southern side of the Craton. All of these three belts having best preserved basin of Precambrian age that form Iron Ore Super Group (IOSG) of Odisha. Sundergarh district lies under Western flank by the Bonai –Keonjhar (BK) belt forming U shaped synclinorium which is known as the Horseshoe belt. Iron Ore Super Group (IOSG) Odisha, rock assemblages is belong to Singhbhum – North Odisha Iron Ore Craton. There are three or more Iron Ore Group existing in the IOSG such as Badampahar Group, Noamundi Group and Koira Group. These groups are separated by unconformity, different metamorphic grade, distinct sedimentary and igneous assemblages and ore types (Fig: 2.1).

The Mayurbhanj granite occurring along the eastern fringe of the Singhbhum granite was dated to be 3100Ma. The A type Mayurbhanj Granite Pluton (3.09Ga) occurring along the eastern margin of the Singhbhum – Odisha Craton, eastern India, represent the final phase of acid plutonism in this crustal block of Archaean age.

I. BIF-1: Badampahar – Gorumahisani – Sulpet Belt

BIF-1 comprising of iron formation of Badampahar Gorumahisani – Sulpet (BGS) Belt. The litho assemblage of this oldest Iron Ore Group consists of banded cherty quartzite, tremolite- actinolite schist and fuchsite quartzite. The Badam Quartzite is well exposed in the western side of BGS. Banded magnetite quartzite is the dominant litho unit in the BIF-1. The major mineral constituents are Magnetite, martite, hematite, specularite, goethite, grunerite, and quartz. The BIF-1 has suffered amphibolites facies of metamorphism.

II. BIF – II: Daitari- Tomka Belt

The BIF-II lying in the southern portion of the North Odisha Iron Ore Craton is confirmed to Daitari – Tomka belt. It is underlain and overlain by Badampahar quartzite and Dhanjori quartzite. The litho assemblage of this belt consists of banded magnetite/hematite quartzite, banded magnetite/hematite jasper, quartz sericite schist, phyllite, slate and banded chert. The rocks of BIF –II attain green schist facies of metamorphism.

III. BIF – III: Bonai- Keonjhar Belt:

BIF-III is a U- shaped pattern in the western flank of the NOIOC that rests over the Dhanjori Quartzite. The litho association of this area forms the youngest Iron Ore Group comprising of banded hematite jasper, banded hematite quartz/cherty, banded shale, banded manganese formation and ferruginous shale. The banded iron formation consist of predominantly iron oxide mineral such as hematite, martite, specularite, and

magnetite. The litho assemblage of this youngest iron ore belt is unmetamorphosed and lack of intrusive Fig (2.2).

Fig 2.1: Schematic diagram of stratigraphic setting of three BIF of IOSG (Beura et al.2016

Fig 2.2: Stratigraphic Succession of Iron Ore Super Group of Odisha (Beura et al. 2016).

2.1.1. Local Geology

The study area is occupied by the rock of Koira group Table (2.1). This belt is 60km long and 25 km wide extending from south of Malangtoli in Keonjhar district up to Chakra Dhrampurin West Singhbhum district (Jharkhand). The western syncline known as Koira syncline, due to steep dip and overturned nature of its limb form a deeper basin with thick sequence of younger shales in the core region. On the other hand, the eastern syncline known as Bamberi syncline is a shallower basin and exposes younger litho members within the core region as outliers. The Upper shale unit within the Koira syncline is more or less continuous. The general strike of the beddings in N100W- S100E direction with occasional swing to N300E-S300W, having 20° - 40° dip towards west in the area. The area under investigation lies within the Upper Shale Formation of the Koira group described by Murthy & Acharya (19975)

Table 2.	Table 2.1: Startigraphy of Koira Group in Sundergarh district, Odisha					
	Soil Laterite					
Koira	Upper Shale Formation	Shale's of different color like purple, yellow with inter beds of				
Group		Iron ore				
-	Banded Iron Formation	Coarsely banded BHJ followed up by finely banded BHJ and				
		iron ore in the eastern block.				

Dholta Pahar Iron ore Block of M/S. Kashvi Power and Steel Pvt. Ltd is belonging to Singhbhum iron ore series and main rock type in the study area are Laterite, Hematite, and Shale. Geologically, the area is underlain by Pre – Cambrian crystalline rocks like Granite, Granitic Gneiss, Banded Hematite Jasper, Quartzite, Slate, Phyllite, and Mica Schist.

Laterite

Laterites are observed in the study area including ML area that has been the resulted from a process of residual weathering. Laterite has been developed mostly over the shale unit or low grade iron ores of the area. The shale rich in alumina has given rise to aluminous laterite and those rich in iron have developed ferruginous laterites. Ferruginous laterite occupies most of the high lands in the vicinity of iron ore of central ridge while aluminous laterite occurs in the extreme east of the area.

Shale

Western side study area has occupied with fine laminated rock having different shades of colors ranging from brownish to purple grey. Different colors of the Shale are largely dependent of minerals compositions. It is mostly composed of clayey micaceous minerals, with lenses of chert.

Iron Ore

Iron ore formation are economically important meta sedimentary rocks that occur most commonly in Precambrain sedimentary succession Based on surface exposures and subsurface geology 4 (four) types of iron ore are recorded in the explored block. (Fig 2.1). These are Hard Laminated Ore (HLO), Soft Laminated Ore (SLO), blue dust (powdery ore), lateritic ore and float ores. The general strike of the beddings in N100W- S100Edirection with occasional swing to N300E-S300W, having 20° - 40° dip towards west in the study area

Geomorphology & Soil Type

Geomorphology: The district has varied geomorphological features. The geomorphic units are (I) Plain (ii)Deep Buried Pediment (iii) Shallow buried pediment (iv) Intermontane valley (v) Inselberg, (vi) Mesa & Butte, (vii) Residual Hills, (viii) Intermontane Valleys, (ix) Structural hills. The soil characteristics of the district show wide variation depending upon their occurrence, physical and chemical properties. The soil of the district is broadly grouped into (I) Alfisols (II) Ultisols (CGWB Report).

Alfisoil and Red Soil Ι.

The study area is covered with red sandy soils and red loamy soils. These soils predominantly occupy high and medium land throughout the Sundargarh district. The characteristics feature of Red soil is porous and fragile in structure. These are usually deficient in nitrogen, phosphate, organic matter and lime. These soils are suitable for cultivation of paddy and other crops.

П. Ultisoils

The ultisols comprises mainly of lateritic soils and red and yellow soils. These soils are mildly acidic in nature and deficient in nitrogen, phosphorous and potassium and organic matters. Soils of the district are generally having average to good fertility status. All common types of crops can be grown in the district.

Geomorphological cum Geological map of Study area

Fig 2.3: Geomorphological cum Geology map of Dholta Pahar Fe Mine

2.2. Climate and Rainfall pattern

The climate of the district is sub tropical climate characterized with hot and dry summer, cold winter and erratic in rainfall. The winter season extends from November to end of February, which is followed by summer season from March to the middle of June, and rainy season from middle of June to middle of October. During summer months the maximum temperature rises up to 43° C and May is the hottest month. December is the coldest month of the year when the average daily temperature drops down to 8° C. Relative humidity is around 60-70% throughout the year. The highest and lowest monthly mean relative humidity so far recorded is 97% (Dec) and 26% (April). The annual rainfall of last decade is given in Table (2.2).

Table 2.2 Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020									
Year	Actual		Year	Actual Rainfall	D	Average			
	Rainfall (mm)	Deviation (%)		(mm)	Deviation (%)	Rainfall (mm)			
2011	1788.35	20.87	2016	1098.51	-28.82				
2012	1435.18	1.39	2017	1323.91	-6.8				
2013	1537.77	7.97	2018	1396.59	-1.32	1415.126			
2014	1335.09	-5.99	2019	1387.02	-2.02				
2015	1286.6	-9.9	2020	1562.24	9.4				

2.3 Ground water regime monitoring:

The study area comprises 10km radius zone in Dholta Pahar iron ore Block located in Koira Tehsil of Sundargarh district of Odisha. Detailed hydrogeological study of both core and buffer zone of mine area is carried out. The hydrogeological condition varied from place to place due to different litho unit of aquifer. The hydrogeological units of the study area are broadly categorized into two groups namely.

- 1. Consolidated formations.
- 2. Unconsolidated formations

1. Consolidated formations

The study area is occupied by the consolidated formations comprising of Precambrian metasediments of Gangpur series and Iron ore series and also granite gneiss, metasediments like amphibolite, epidiorite etc. Ground water is stored mainly in the secondary porosity resulting from weathering and fracturing of the rocks. Ground water occurs under confined to semi-confined condition in the deeper fractured zones. Water yielding capacity is mainly depend on the extent of fracture, depth, opening and size of fracture. Mica schist, quartzite and phyllite are the formation in the study area.

2. Unconsolidated Formation

Laterite and alluvium are the main constituents of unconsolidated formation in the study area. The laterite is belonging to sub recent to recent age having high porosity. It is the good aquifer for dug well in study area. The alluvium soils are also the potential aquifers due to their high degree of porosity and permeability but are only limited in their occurrence.

	Table2.3: Well inventory data of Dug wells of Core and buffer zone of Dholta Pahar Fe ore Mine									
(La	(Lat & Long data are as per GPS reading, DO, EC, pH, and TDS measured on site using calibrated Hanna portable									
	equipment during (April 2022).									
Sr no.	Location	Latitude	Longitude	Elevation (m)	EC (mS)	рН	TDS(ppt)	Depth of the well (m)	Water Level(m)	DO (mg/l)
1	Dengura	21.869327	85.200782	608.26	60	6.5	30	49.5	28.3	6.8
2	Pond	21.868889	85.187991	619.85	20	5.9	10		0.5	1.38
3	Dholta Hand	21.870424	85.188821	620.56	35	6.7	15			4.6
4	Salkunda	21.819241	85.153618	449.78	340	6.7	170			2.59
5	Salkunda	21.818068	85.153606	431.39	260	6.7	140	55.3	22.9	6.08
6	Pond	21.876188	85.196579	572.02	650	7.3	360			4.73
7	Pit	21.878495	85.197651	653	20	6.3	10		0.5	4.24
				Buffe	r Zone					
8	Tumsa Zero	21.873844	85.161773	723.31	70	6.9	40			4.25
9	Barsuan	21.870688	85.103978	366.28	560	6.9	290			2.42
10	Rainkela	21.868772	85.10608	370.59	300	7.1	160	69.69	27.27	3.51
11	Saskela	21.854939	85.111915	373.46	290	6.7	150			1.63
	Panchayat Office						.			
12	Satsketrageol	og2da8446709stig	ation5.and6667pac	t A 330 ssinei	nt Repoot for	Dbølta	Pal <u>1</u> a)Ofor	Iron Ore,	, Sunderga	rh 2.66
13	Salkunda	21.819241	85.153618	449.78	340	6.7	170			¹⁵ 2.59
14	Salkunda	21.818068	85.153606	431.39	260	6.7	140	55.5	22.9	6.08

	Comanado									
15	Steel Plant	21.918085	85.209714	573.27						5.94
16	Comanado Steel Plant	21.919268	85.208213	576.61	60	6.7	30		20.5	2.17
	Radhe Krishna									
17	Mandir	21.895306	85.240408	588.94	70	6.6	30			2.47
	Radhe Krishna									
18	Mandir	21.895102	85.241608	589.1	30	6.4	20	60.6	26.2	5.19
19	Koira, near bus stand	21.906956	85.248041	560.57	280	6.9	150			2.72
	Koira, near Police									
20	Station	21.907018	85.239381	561.55	60	7.1	20	60.6	21.21	6.1
	Koida Petrol									
21	Pump	21.909395	85.232136	573.13	120	6.8	60	10.9	6.4	5.13
22	Koida Chowk	21.913434	85.224078		60	6.5	25			5.5
23	Koira raod	21.905473	85.220677	552.92	70	6.1	40			3.6
24	Koira	21.909781	85.230875	558.29	120	6.8	60		18.5	5.16
25	Bhatuda	21.802585	85.144547	446.31	200	7.2	100			6.1
26	Bhatuda	21.802922	85.144842	449.3	160	7.3	80			6.5

2.3.1 Detailed study of core and buffer zone

As per the field investigation it has been observed that the main source of water is from cannel and groundwater. Groundwater is withdrawal from bore well as well as from hand pump (Fig-2.4). Most of dug well having water level from 3.7 to 7.5m in pre monsoon period. Total depth of dug well is from 9 to 12m. It has been observed that the bore wells are often from 16 to 30m in depth. Ground water is lying in weathered part of hard rock aquifer (2.5). Hard rock comprises Precambrian met sediments like Mica schist, quartzite, phyllite, conglomerate along with granite. The movement of the ground water in deeper rocks is controlled by the nature, size opening and continuity of joints & fracture present in them. Wells in hard rock generally yield 50 to 70 m3 /day of all the rock types. Schist, phyllite and their variants form very poor aquifers yielding 10 to 30 m3 /day for heavy drawdown. Well inventory of study

area (Fig:2.5) in Pre Monsoon (April 2022) period showing ground water level varies within the range from 3.7 m to 36.3m bgl (Table 2.3)

Fig 2.4: Hand pump and bore well in core zone of Dholta Pahar block

2.3.1. Aquifer Characteristics

The study area both core and buffer zone having largely single aquifer of unconfined nature, developed on the weathered part of rocks of Koira group and laterites. The hills top area is devoid of any aquifer. Aquifers are developed only in the low lying area and valley parts of the study area.

The discharge varies from 10 to 70m3/day depending on lithology of aquifer. The transmissivity storability is mainly low and drawdown is moderately high to high. Open well having sustainable yield round the year. The area is categorized under safe zone according to the latest GWR estimation. Ambient quality of groundwater is fresh.

Fig2.5: Google image showing mine location and sample collection locations

Fig 2.6: DTW map of core and buffer zone.

Groundwater Flow:

The groundwater contour map generated using the intense monitoring in core and buffer zone of mining is depicted in Fig 2.6. The map showing clear cut development of groundwater dived running through the mine area. The GW flow direction largely coincides with the surface water flow direction as shown in fig 2.7. Thus mine is on groundwater divide and any dewatering from mine will not effects significantly the flow direction of groundwater of the area.

Fig 2.7: Groundwater contour map of Dholta pahar mine area

INDEX – Sky blue line shows groundwater divide, arrows indicate groundwater flow direction, values indicate groundwater elevation (m amsl), dots indicate data point used for generation of groundwater contour, buffer zone is marked by 10 km radius circle. Note the mine position is (Red dot).

2.4 Long term groundwater trend

The study area comprises 10km radius zone in Dholta Pahar block mine that largely fall under Koira tehsil, Sundergarh district, Odisha. In the core zone village the source of ground water such as bore well; hand pump and pond are used for domestic, irrigation and drinking whereout of 3 observation location of dug well, it has been observed that the water level (Pre monsoon 2022) varying from 3 to 7.5m bgl. Long term trend analysis of data obtained from WRIS shows no significant change-rise or fall as depicted in **Fig: 2.8**

Fig 2.8: Long term well hydrograph of wells of Sundergarh district, Odisha (source: WRIS portal)

2.4.1Dynamic Groundwater Resource of study area:

The groundwater resource as estimated by CGWB (2020) is presented in the table 2.4 for Koira block of Sundargarh district Odisha and is in safe category.

	District	Block	G Monsoon S Recharge from Rainfall	Foun easo Rea e fi oth sou	d water Recharge (Har on Non Monsoon charg Recharge rom from her Rainfall urces		m) Season Recharge from other sources	Total Ground water Recharge (Hamm)	Total Natural Dischar ge (Ham)	Annual Extractable ground water resources (Ham)	
1	Sundergarh	Koira	4777.33	139	9.58	572	.73	172.14	5661.78	283.09	5378.69
	Annual Extractable Ground water Resources (Ham)	Annua Irrigati	l Groundwat on Industi	ter D	raft (Ha Dome	am) estic	Total Extract ion	Annual GW allocation for Domestic use as on 2025 (Ham)	Net Groundwat er availability for future use (Ham)	Stage of Ground water Extracti on (%)	Categorizatio n (over exploited/ Critical/semi critical/ safe/ saline)
2	5378.63	873.45	290.16		265.2	5	1428.8	304.71	3910.38	26.57	Safe

Table: 2.4 Block wise Dynamic Groundwater Resources of Koira block, Sundergarh district, Odisha

2.5 Groundwater Quality

Based on the above study, different ground water parameters were computed, which include pH, TDS, EC, DO, Temperature. Ground water in study area is potable with pH ranging 5.9 to 7.6 and total dissolved solid (TDS) ranging from 10 to 310 ppt and EC ranging from 20 to 600 μ S. (Fig 2.9 and 2.10) Groundwater quality in the study area is fresh and all major and trace elements are found within the BIS 10500 permissible limit. Thus is suitable for all domestic, industrial and irrigational use. The general parameters of groundwater in study area as analyses are given in Table 2.5.The comparison of data reveal that the area mining (Project Area) is having less TDS).

Fig 2.9: TDS map of Dholta Pahar block Fe ore mine

EC Map of 10km Buffer Zone in Study Area

Fig 2.10: EC map of Dholta Pahar block Fe ore mine

Water Quality Data in Piper Trilinear Diagram: Different graphical methods can be adopted for representing geochemical variation which gives a better insight into the groundwater quality monitoring. One such efficient method of representation is plotting of Hill Piper Trilinear diagram in which data are plotted in two triangle fields and one diamond field. The diamond is then classified under various categories emphasizing their characteristics.

Fig2.11: Sub-divisions of the diamond field

On the basis of data collection from CGWB report (2020-2021). It has been observed that out of 63 samples are concentrated in Area 6 indicating that: Non-carbonate hardness exceeds 50% i.e., Ca + Mg - (SO4 + Cl + NO3). 50% samples are lies under area 4 representing strong acids (SO4 + Cl + NO3) exceed weak acids (CO3 + HCO3). Few samples can be noticed under Area 7: Non-carbonate alkali exceeds 50% i.e., Na + K- (SO4 + Cl + NO3).

Fig2.12: Water Quality Data in Piper Trilinear Diagram in study area

USSL Diagram: The United States Salinity Laboratory (USSL) (1954) and Wilcox (1955) established standards for irrigation water quality classification. The Fig.7.5 is a simple scatter chart of sodium hazard (SAR) on the Y-axis versus salinity hazard (EC) on the X-axis. Using the SAR and the EC value of 41 water samples of Balaghat area determines the quality classification of the water.

Based on the EC, irrigation water can be classified into four categories; include:

I. Low-salinity water (C_1) can be used for irrigation with most crops on most soils with little likelihood that **soil salinity** will develop.

- II. Medium-salinity water (C_2) can be used if a moderate amount of leaching occurs. Plants with moderate salt- tolerance can be grown in most cases without special practices for salinity control.
- III. High-salinity water (C_3) cannot be used on soils, special management for salinity control may be required and plants with good salt tolerance should be selected.
- IV. Very high salinity water (C_4) is not suitable for irrigation under ordinary conditions.

Sodium Adsorption Ratio: High sodium in irrigation water reduces the permeability of soil. The USSL diagram based on SAR divided to four categories included:

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$

- I. Low-sodium water (S_1) can be used for irrigation on almost all soils.
- II. Medium-sodium water (S_2) will present an appreciable sodium hazard in certain finetextured soils. This water may be used on coarse-textured or organic soils with good permeability.
- III. High-sodium water (S_3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management.
- IV. Very high sodium water (S_4) is generally unsatisfactory for irrigation unless special action is taken, such as addition of gypsum to soil (Lyerly and Longenecker, 1957).

Fig 2.13: US Salinity diagram, Sundergarh district, Odisha

Data Analysis:

On the basis of data collection from CGWB report (2020-2021). It has been observed that out of 63 sample, most of the samples are concentrated under C2S1, C2S2 and C3S2 categories indicating low to medium sodium hazards with medium salinity. Out of these, few samples are scattered under C3S1 and C3S2 categories representing high salinity with low to medium sodium hazard. Few samples are scattered in C1S1 indicating low sodium hazards with low salinity.

3. Mining Plan

Government of Odisha has issued letter of Intent (copy enclosed as Annexure-III) under Rule 10(2) of Mineral Auction Rules 2015 to M/s Kashvi Power & Steel pvt Ltd for grant of Mining Lease for Dholta Pahar Block for iron ore over an area of 60.508Ha near Dengula village, Koira Tahasil of Sundargarh district of Odisha for a period of 50 years.

M/s Kashvi Power & Steel pvt Ltd is a part of Kashvi group and one of the growing company in Odisha. Kashvi Power & Steel Private Limited operates as a manufacturer of sponge iron, billet and ingots and exporter of minerals. Orissa based Kashvi group was founded by Mr. Debabrata Behera, a first generation entrepreneur. Mr Behera has more than two and half decades of experience in the business of iron ore trading and exporting, manufacturing of sponge iron, billet and ingots. Iron ore produced from the Dholta Pahar block will mostly be utilized in their sponge iron plant. However, as per the market demand, part of the iron ore may be sold to the consumers.

Table 3.1- Initial/subsequent Lease grant details

Grant	From	То	Lease deed execution date	Lease registration date
	Date of			
LOI issued vide no	Execution			
8725/IV(B)SM-	of the	50 Years from Date		
52/2021/SM,Bhubaneswar,	Lease	of Execution of the		
dated 28.10.2021	deed	Lease deed		

Table 3.2- Land Ownership Details

S.No.	Village	Taluka	Area (Ha)	Khasra No/ Compartment No.	Type of Land	Nature of Land
1		Koira	60.508	Forest Khata	Reserve Forest	Govt Land

Table 3.3- Location of Boundary Pillars –(add additional Row for subsequent pillars)

	Pillar Latitude	
Pillar No.	(dd:mm:ss.ss)	Pillar Longitude (dd:mm:ss.ss)
1	N21°50'11.13855"	E85°10'43.73375"
2	N21°50'34.08851"	E85°10'43.53749"
3	N21°50'34.57854"	E85°11'14.26145"
4	N21°50'12.91054"	E85°11'14.63431"
5	N21°50'12.19012"	E85°10'58.24071"
6	N21°50'12.06361"	E85°10'57.81967"

Table: 3.4- Mining Plan/ Review of Mining Plan at Glance

1	Name of the lessee	M/s Kashvi Power & Steel Ltd.
2	IBM Registration no.	IBM/7815/2011
3	Address of lessee	Plot No 1234/P, Govinda Prasad, Bomikhal, Bhubaneswar

4	Name of Mine	Dholtapahar Iron Ore Block
5	Mine code	Not Obtained
6	Lease area in hects.	60.508
7	Forest area	60.508 Ha.
8	Name of Mineral	Iron Ore
9	Lease period from – to	LOI issued vide no 8725/IV(B) SM-
	_	52/2021/SM,Bhubaneswar, dated 28.10.2021
		50 years W.E.F date of execution of lease deed
1 0	Plan proposal period.	5year w.e.f date of execution of lease deed
1	Mineral	111-0
1	Reserve(111,121&122) in	121-0
	tonnes	122-23921613
		Total-23921613
1	Minoral	211.0
1	$\mathbf{P}_{\text{accurrence}}(211, 221, 222, 22)$	211-0
2	1 332 333 & 334 jn tonnos	221-0
	1,552,555&554) in tonnes	222-0
		331-0
		332-23921013
		333-0
		334-0
_		Total-23921613
1 3	Total (reserve resource) in tonne	23921613
1 4	Reserve estimation as on	Date-Date of execution of lease deed
1	Explored area in ha	G1 – 0
5	-	
		G2-60.508
		G3-0
		Explored and found Non-mineralized area – 20.008
		Un – explored area -Nil
		Total – 60.508
1	Exploration proposal Year	1st year - 21nos
6	wise No. of Bore Holes	2nd year – 21 nos
		3rd year – nil
		4th year – nil
		5th year - nil
		5th year - nil
1	Production proposal Rom	5th year - nil
1 7	Production proposal Rom in tonnes	5th year - nil 1st year - 1999999
1 7	Production proposal Rom in tonnes	5th year - nil 1st year - 1999999 2nd year - 1999999 2.1 year - 1999999
1 7	Production proposal Rom in tonnes	5th year - nil 1st year - 1999999 2nd year - 1999999 3rd year - 2000000
1 7	Production proposal Rom in tonnes	5th year - nil 1st year - 1999999 2nd year - 1999999 3rd year - 2000000 4th year - 1999999
1 7	Production proposal Rom in tonnes	5th year - nil 1st year - 1999999 2nd year - 1999999 3rd year - 2000000 4th year - 1999999 5th year - 2000000
1 7 	Production proposal Rom in tonnes OB/Waste handling	5th year - nil 1st year - 1999999 2nd year - 1999999 3rd year - 2000000 4th year - 1999999 5th year - 2000000 1st year - 2000000 1st year - 73250

1		2nd year 282550
		$\frac{2100 \text{ ycal} - 202330}{2rd \text{ your } 238600}$
		3rd year - 338000
		4th year – 234550
		Sth year - 4/0/00
1	Present EC permission in	Since it is a fresh lease, the lessee will obtain EC before
9	tonnes	Execution of the lease deed.
2	Present forest clearance	Since it is a fresh lease, the lessee will obtain FC before
0	area in ha	Execution of the lease deed.
2	Plantation Proposal in five	1st year - 230
1	years in numbers	
		2nd year - 230
		3rd year – 1126
		4th year – 230
		5th year - 230
		Total Plantation- 2046
2	Plantation Proposal in five	1st year - 0.25
2	years (ha)	
		2nd year - 0.25
		3rd year – 1.52
		4th year - 0.25
		5th year - 0.25
		Total Area- 2.52
2	Back filling proposal in	Not Applicable
3	bectares in five	
5	vears(vears wise)	
2	Check Dams numbers in	3nos
$\frac{2}{4}$	five years	51105
2	Garland drain in meters	1st year - 320
5	five years(years wise)	ist your 520
5	nive years(years wise)	2nd year - 105
		3rd year -0.0
		Ath year 0.0
		$\frac{4 \text{ III year } -0.0}{5 \text{ th year } -0.0}$
2	Cattling nonda	
2	Setting ponds	Tst year - 2
0	(Numbers)(years wise)	Judamen 1
		$2 \ln y \exp - 1$
		3rd year – 0
		4th year -0
		5th year -0
2	Total Area put to use in	65.179
7	mining and allied activity	
	at end of five years in ha	
2	Bank Guarantee Amount	Not Applicable
8	Rs	
2	Validity pf BG up to	Not Applicable
9		
-		

3.1Exploration Plan

Iron ore in the block occur as bedded stratiform deposit of regular habit with intercalations of shale and BIF, representing BHJ/BHQ/BHC. Since it is a stratiform type of regular habit, boreholes plans have been done at 200 m X 100 m grid spacing to fulfil the requirement of provisions of General Exploration of MEMC Rule-2015, accommodating the DIOP series holes drilled in 2006-08. The borehole locations are shown in the geological map of the Block. Dry core drilling was adopted by TC bits and as per driller's site report, virtually there was negligible loss in core recovery during core drilling. The core recovery has been recorded for all ore types are found to be 100%. A total of 19 vertical boreholes were drilled by rig KME-300 series& LTE-575 in the block, out of which 5 BHs were drilled during F.S 2006-08 and 14 BHs were drilled during 2017-18 for cumulative drilling meter age of 982.5 m. These boreholes are from 19.5m (BH-12) to 82.00m (BH-9). The Borehole BH-10, BH-11, BH-13 & BH-14 were shifted to 100m north of N200/W400,74m north of N400/W400, 22m south of N500 and 50m north of S100 grid location respectively due to steep scarp sections and high gradient lines.

Fig. 3.1- Drill hole location

3.2. Mineralization details

The maximum thickness of ore bodies intersected at + 55% Fe cut off is 20.75 m in (BH-3) and minimum thickness is 0.6m in (BH-4) having average iron content of 61.863% Fe. The maximum thickness of low grade ore zone (45 < 55% Fe) intersected in the boreholes is 13.6m(DIOP-4) and minimum thickness of 0.7m (DIOP-1) having average iron content of 49.251%.Variegated shale and BHJ are found in the foot wall side, which limits the mineralization where as lateritised shale occurs as overburden. The ore types includes soft laminated types towards top and grades in to hard laminated while blue dust is localised in the bottom horizon. The ore bodies are often capped by laterite on surface. Though outcrops of soft laminated ore, and float ore are exposed on the surface but soft laminated ore and blue dust constitutes the bulk thickness of the ore zone as evidenced from drill cores.

3.2.1. Reserve / Resource

Table 3.5 Threshold value & Cut off Parameters

1	Threshold	45% Fe
2	Cut-off grade	55%Fe

Table 3.6 Mining Factors or Assumptions

Sl. no	Salient features	Description
1)	Method of Mining	Fully Mechanized (FM)
2)	Proposed production	2.0 Million Tones
3)	Type of ore	Lateritic Iron ore, Hard Laminated ore, Soft Laminated ore, Blue dust
4)	Proposed Means of raising	Drilling, Blasting, excavation, screening, crushing, loading etc.
5)	Proposed Bench height and width	Height- 10m
		Width – More than the height
6)	Proposed Stripping ratio (t/m3) (Ore: OF	1:0.28
7)	Over all slope	28 [°] -37.5 [°]
8)	Transportation ore to the stacking yard	Through dumper
9)	Nature of overburden/ interburden	Generally consists of BHJ, shale, and Laterites.
10	Drilling	110mm dia drill hole
11)	Blasting	Deep hole blasting using slurry/Emulsion, explosives &
		NONEL& Electric Detonator.

Table 3.6 Mineral Reserve

	Code	Quantity			Grade	
Classification						Non-
		Forest	Non-Fores	Total	Forest	Forest
A. Mineral Reserve		23921614	Nil	23921614	+45%Fe	Nil
1. Proved Mineral Reserve (A)	111 (In situ)	Nil	Nil	Nil	Nil	Nil
	Code 111 (In situ) 111 (In situ) 111 (float) 121 122 (In situ) 122 (Float) 211 (In situ) 211 (float) 221 231 332 333	Nil	Nil	Nil	Nil	Nil
	111(float)	Nil	Nil	Nil	Nil	Nil
	111(110at)	Nil	Nil	Nil	Nil	Nil
2. Probable Mineral Reserve (A)	121	Nil	Nil	Nil	Nil	Nil
3. Probable Mineral Reserve (A)		16448530	Nil	Nil	+55%Fe	Nil
	122 (In situ)	7182332	Nil	Nil	45-55%Fe	Nil
		290752	Nil	Nil	+55%Fe	Nil
	122 (Float)		Nil	Nil	Nil	Nil
B. Remaining Resources		Nil	Nil	Nil	Nil	Nil
1. Feasibility Mineral Resource (B)	211(In situ)	Nil	Nil	Nil	Nil	Nil
	211(III situ)	Nil	Nil	Nil	Nil	Nil
	211(float)	Nil	Nil	Nil	Nil	Nil
	211(110at)	Nil	Nil	Nil	Nil	Nil
2. Prefeasibility Mineral Resource (B)	221	Nil	Nil	Nil	Nil	Nil
3. Prefeasibility Mineral Resource (B)	222	Nil	Nil	Nil	Nil	Nil
4. Measured Mineral Resource (B)	331	Nil	Nil	Nil	Nil	Nil
5. Indicated Mineral Resource (B)	332	Nil	Nil	Nil	Nil	Nil
6. Inferred Mineral Resource (B)	333	Nil	Nil	Nil	Nil	Nil
7. Reconnaissance Mineral Resource			Nil	Nil	Nil	Nil
(B)	334	Nil				
Total Mineral Resources (A+B)		23921614		23921614	+45%Fe	

Table 3.7 Mineral Beneficiation / Processing

Sl. No.	Radicals	Wt %
1	Fe at +55 Cutoff	61.863%
2	Silica	2.892%
3	Alumina	3.133%

3.3. Mining Operations

During the plan period, it has been proposed to produce2.0 MTPA iron ore per annum. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc.

Strategy for Development:

It has been planned develop the areain a such a way by which both high grade and low grade iron ore production can be obtained for suitable blending purpose to make the material usable. The height and width of the proposed benches has been kept 10 and 15 meter respectively. Haul Road:

The layout of roads for haulage of ore/ waste and access to different installation in the mine will be developed complying with the statutory regulations stipulated in the Metalli ferrous Mines Regulations, 1961. Overburden and Mineral reject will be transported to the respective site of dumping and stacking located in the lease area. Fifteen meter wide haul road will be developed in the lease area as per need at a gradient up to 1:16. **Site Services:**

As far as day to day mine operation is concerned, the infrastructure such as site office, weigh bridge, rest shed, First-aid centre, blasting shed security house, magazine, guard house etc will be established before mining operation in the lease area.

Machineries to be deploye

The mine will be operated in a three shift basis. Process of excavation and loading of overburden/waste will be done by deploying hydraulic excavators and dumpers. Excavators of 0.9 - 2 m³ capacities will be deployed for excavation & loading of ROM ore and dumpers of 25t capacity shall be deployed for transportation of ore and OB. Hard iron ore will be loosened through drilling & blasting. For the purpose, DTH drill of 115mm dia, compressor of 450cfm etc will be used during ensuing scheme period to achieve the targeted production. For maintenance of OB dumps dozers will be deployed. Loading & un-loading of sorted & sized ore is loaded by mechanized method.

Transportation

Ore will be transported from quarry site to screen and crushing site for processing by use of 25 ton dumpers and waste materials will be dispatched from quarry to dumping site by using same capacity dumpers. From the stock yard saleable material will be dispatch by using dumper of different capacities.

	PRODUCTION	MINERAL		
	MAIN	REJECT	ROM	WASTE
YEAR	(in Tonne)	(in Tonne)	(in Tonne)	(in Tonne)
1ST	1525464	474535	1999999	146500
2ND	1448139	551860	1999999	565100
3RD	1539315	460685	2000000	677200
4TH	1479551	520447	1999998	469100
5TH	1629056	370944	2000000	941400
GRAND TOTAL	7621525	2378471	9999996	2799300

Fig 3.2: Year wise Development section

3.9 Table: Total ROM and waste generation

SI. No.	Year	Total Handling (t)	Waste Quantity (t)	ROM Quantity (t)	ROM Quantity Saleable Mineral (t)	ROM Quantity Mineral Reject (t)	Ore to OB Ratio (RoM Quantity / Waste Quantity)	Grade Range (%
1	1 st	2146499	146500	1999999	1525175	453161	1:0.073	45% Fe to +65 % Fe
2	2 nd	2565099	565100	1999999	1448139	551860	1:0.283	45% Fe to +65 % Fe
3	3 rd	2677200	677200	2000000	1539315	460684	1:0.339	45% Fe to +65 % Fe
4	4 th	2469099	469100	1999999	1479551	520447	1:0.235	45% Fe to +65 % Fe
5	5 th	2941400	941400	2000000	1629056	370944	1:0.471	45% Fe to +65 % Fe
Total		12799297	2799300	9999997	7621236	2357096	1:0.280	45% Fe to +65 % Fe

Fig 3.3: Five years development Plan

Table 4.1: Proposal of Water Utilization in Dholta Pahar mine (Area= 60.508ha)								
SI. No	Purpose	Ground Water (KLD)	RWH & Outside	Recycled STP &ETP (KLD)	Total from all source			
1	Dust Suppression	59	30	9	98			
2	Domestic Use	12	-	-	12			
3	Plantation	8	8	5	21			
4	ETP & Workshop, Wheel Washing System	18	2	4	24			
	Total 97 40 18 155							

4. Proposed utilization of water for Mine Operation

As per the approved mine plan the Dholtapahar block mine proposed total requirement of water is 155 KLD. The required quantity will be drawn from ground water sources, RWH and recycled water. The entire water is utilize as per the Table 4.1

4.1 For Drinking – No mine discharge will be generating during mining activities. For Drinking and domestic use 12 KLD of water is required which obtained from groundwater sources.

4.2 Plantation – 21 KLD of water is required for plantation. It will obtain from 8KLD from groundwater, 8KLD from RWH and 5KLD from recycle water (ETP & STP).

4.3 Dust suppression, green belt development- as shown in table 4.1, 98KLD is required for this purpose. It is obtain from 59KLD groundwater, 30KLD from RWH and 9KLD from recycled water.

4.4 ETP & Workshop, Wheel Washing System- For ETP & Workshop and wheel washing system 18 KLD is obtain from groundwater, 2KLD from RWH and 4KLD from recycle water.

4.4 Runoff to stream- Small rills/gullies is generated during rainy season in lease area. RWH structures have been proposed on these rills/gullies.

4.5 Benefitted area- Nearby villagers
5. Comprehensive assessment of the impact on the ground water regime

Comprehensive assessment of the impact on the ground water regime in and around the project area highlighting the risks and proposed management strategies proposed to overcome any significant environmental issues.

M/s Kashvi Power & Steel pvt Ltd for grant of Mining Lease for Dholta Pahar Block for iron ore over an area of 60.508Ha near Dengula village, KoiraTahasil of Sundargarh district of Odisha for a period of 50 years. Iron ore produced from the block will mostly be utilized in the pellet plant. Total estimated mineable reserve within the area is 23921613 tonnes for iron ore. During the plan period, it has been proposed to produce 2.0 MTPA iron ore per annum. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. There is no agriculture land in the core zone. However in buffer zone agriculture land will be preserved from siltation by retaining wall, check dams, garland drain and settling ponds. . The nearest surface water source is Teherai Nala which is flowing 500m away from the western side of the mining lease. Teherai Nala is the major 2nd order drainage system of the area. As per the field observation there are some mine pit surrounding the lease area which work as recharge tank in rainy season. The lease area experience heavy rainfall during rainy season so that it will minimizes the groundwater usage. Presently, in buffer zone during rainy season, the water is accumulated in the mine out area. The sump acts as a good rainwater accumulation structure and the collected rainwater is also seeps into the ground.

Fig 5.1: Existing mine pit within 2km of core zone

5.1. Impact on surface water sources:

DholtaPahar Iron ore mine is situated in the higher elevation as depicted in the fig 6.2: No perinial Nala/stream exists or generates from ML area of Dholta Pahar Fe mine. The ML area is not situated within any wetland zone and not part of any national park etc. Other existing small ponds/ water bodies within core and buffer zone has been investigated and the water quality is found normal.

5.1.1 Diversion

Existing channels [constructed dam/barrages/weir/canals/hydro-electric projects] No existing channel, constructed dam/barrages/weir/canals/hydro-electric projects etc need to be diverted due to the project. Thus 5.1.1 is not applicable.

5.1.2: Change

In land use [change in flood plain, lotic & lentic systems etc.]-No nala/stream/ river exist or generates from ML area of Dholtapahar mine. The ML area is not situated within any wetland zone thus change in land use in flood plain, lotic & lentic systems etc is not applicable.

5.2. Impact on groundwater sources-

The Dholta Pahar mine lease area is in Koira block of Sundergarh district, Odisha which is categorized under safe category (Stage of GW Extraction 33%) by the latest estimation carried out by CGWB (2020). The groundwater levels measured in core and buffer zone varies from (3.7-36.3m). The area is part of hard rock terrain with poor permeability rock and there is no aquifer system due to high elevation (824m). During the field study it has been found that a town name Tensa also has no aquifer. All the water requirements are fulfilled from supplied water foothill village name Barsua Based on the field observation it has been found that there is no weathered portion in around the lease area. At present there is no existing water body, the mining activity will be carried out in such a manner which won't create any threat of groundwater resources. The mine area experienced heavy rainfall hence by constriction of check dam, rooftop rain water harvesting structure, retaining wall and settling pond can enhance the water availability.

Fig 5.2: Google elevation profile of study area around Dholta Pahar Fe ore Mine from three directions

5.3. Socio-Economic Aspects:

5.3.1. Settlements and population dynamics around project area

The study area comes under rural. There exists about 31 villages in the study area and their details are given in Table 5.1 and 5.2

There is no impact of groundwater withdrawal by Dholtapahar Block Fe ore Mine on the study area, study can recommend NOC may be extended for next 5 yr with existing 97KLD extractions from groundwater system

Table 5.1 Crop production details of Sundergarh District							
Odisha in Kharif and Rabi Season							
	Khar	if	Rabi				
SI	Crops	Area (ha)	Crops	Area (ha)			
no.							
1	Paddy	13250	Wheat	111			
2	Maze	463	Cowpa	190			
3	Ragi dry	205	Horsegram	774			
4	Jower	124	Gram	298			
5	Biri	1403	Mustard	395			
6	Cowpa	146	Potato	109			
7	Groundnut	296	Onion	195			
8	Til	1286	Garlic	80			
9	Zinger	156	Fieldpea	140			
10	Other vegetables	1088	Other vegetables	1786			

5.3.2. **Dependency**:

On sources of water [surface or sub-surface] the area by and large depends on rainfed agriculture with supportive irrigation. It is seen that shifting of occupation among the local population is mostly towards mining and its related work. Mining leads to livelihood gain through creation of employment opportunities in the region. Loss of cultivable land and forest land due to mining activities which invites change in their native profession and may envisage involuntary migration of population to other region for livelihood. This working mining project has immensely benefitted this region in the field of potential employment, improved per capita income, improved social welfare, education, medical healthcare systems, communication, infrastructural build-up, etc. In the core zone no habitation exists. Hence, economic profile of population within core zone is not envisaged. In buffer zone, this project will help in direct employment opportunities for 259 persons and indirect employment for more than 250 persons through various service related activities connected with the project operations

distr	district, Odisha							
Sl.no	Location	House	Male	Female	Total Population	Area (ha)		
1	Baldihi	80	170	157	327	508		
2	Ranisal	74	151	136	287	126		
3	Padadhi	88	152	175	327	192		
4	Patmunda	242	501	512	1013	384		
5	Khajuridihi	85	179	186	365	797		
6	Teheri	174	339	415	754	544		
7	Sargigarh	176	355	383	738	363		
8	Sanindipur	204	414	372	786	461		
9	Kalmanga	323	634	656	1290	753		
10	Ganua	376	820	797	1617	754		
11	Rangalbeda	162	334	294	628	388		
12	Kasira	270	581	699	1280	777		
13	Badpatuli	108	217	239	456	346		
14	Kadamdihi	105	249	265	514	697		
15	Kirrakudar	81	186	168	354	203		
16	Gaudiniposh	155	420	414	834	274		
17	Badindipur	123	284	264	548	396		
18	Dengula	173	438	498	936	3496		
19	Saleipali	147	341	396	737	215		
20	Basada	36	73	80	153	313		
21	Dalita	18	33	36	69	424		
22	Tegerei	174	339	415	754	544		
23	Kula	149	379	374	753	332		
24	Malda	147	297	267	564	577		
25	Nuagaon	90	223	217	440	432		
26	Patbeda	34	79	66	145	308		
27	Railela	302	645	697	1342	683		
28	Rengua	54	150	167	317	265		
29	Sanputli	207	449	445	894	423		
30	Taldihi	75	158	163	321	1104		
31	Bandal	92	219	249	468	437		

 Table 5.2 Population data of study area in part of Koida tehsil, Sundergarh

 district
 Odisha

6. Proposed measures for disposal of wastewater by mine drawing saline water

The water in the surrounding of lease area is fresh and the TDS is ranges between 10 and 310 ppm in general so disposal of saline water not applicable.

7. Water Conservation

Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted. - Brief writes up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project. - Details of water conservation measures to be adopted to reduce/ save the ground water. - Total water balance chart showing the usage of water for various processes in table 4.1

At present the lease area is required 155 KLD of water for mining operations. The entire water requirements are fulfilled by ground water, RWH and recycle water. The water is to be consumed by various mine operation such as dust suppression, domestic use, plantation, and ETP & workshop (Table 4.1). The area experiences high rainfall, the site will generate above volume of run offs during such rainy periods. The surface run off from the uncovered site would contain high concentration of suspended matter and eroded matter which will be checked through retaining wall, check dams and settling ponds.

Water conservations can be enhanced by including efficient measures of water use for mining and domestic consumption, effective reuse and recycles of water and treated water, adoption of appropriate rainwater harvesting methods. It is therefore following sub topics are incorporated in this chapter.

7.1 Water use and water balance

7.2 RWH

7.1 Water use and water balance:

Dholta Pahar iron ore mine is proposed a requirement of 155KLD of water. Water is to be used for dust suppression, domestic use, plantation, and ETP & workshop purposes shown in the (Table 4.1).

7.2. Rainwater Harvesting & Artificial recharge:

The total lease area of Dholta Pahar Iron ore mine is 60508 m² and its land use is discussed in chapter 1.4 and table 1.1. The area experiences high rainfall so that the mine has concentrated effort to conserve each drop of rainwater. The project area is having undulating hilly terrain and poor permeability. The depth of water level below ground level varies depending on the

Hydrogeological Investigation and Impact Assessment Report for Dholta Pahar for Iron Ore, Sundergarh District, Odisha

local topography, geology & hydrological conditions. The nearest surface water source is Teherai Nala which is flowing 500m away from the western side of the mining lease. Teherai Nala is the major 2nd order drainage system of the area. Mine pit structure also present all around the lease area where water gets collected from the uplands through drains. Garland drains & retaining walls will be constructed all around the dumps and plantation of native species will be carried out on the dump slopes to minimize erosion. A settling pond will be constructed to arrest silt and sediment flows from mining area during rain fall and the water so collected is being utilized for the mine area, roads, green belt development etc.

Table 7.1 Crop production details of Sundergarh District								
Odish	Odisha in Kharif and Rabi Season							
	Khar	if	Rabi					
SI	Crops	Area (ha)	Crops	Area (ha)				
no.								
1	Paddy	13250	Wheat	111				
2	Maze	463	Соwра	190				
3	Ragi dry	205	Horsegram	774				
4	Jower	124	Gram	298				
5	Biri	1403	Mustard	395				
6	Cowpa	146	Potato	109				
7	Groundnut	296	Onion	195				
8	Til	1286	Garlic	80				
9	Zinger	156	Fieldpea	140				
10	Other vegetables	1088	Other vegetables	1786				

Hydrogeological Investigation and Impact Assessment Report for Dholta Pahar for Iron Ore, Sundergarh District, Odisha

Fig 7.1: Existing rainwater harvesting pond and mine pit storage tank in buffer zone

	Table 7.2: Pond and Water bodies in buffer zone									
SI No.	Location	Latitude	Longitude	Elevation (m)	EC (mS)	рН	TDS(ppt)	DO (mg/l)	water body	
1	Ranisal	21.884162	85.305325	596.84	650	7.1	320	4.7	Pond	
2	Paatmunda	21.87555	85.308419	617.73	320	6.9	150	1.3	Pond	
3	Khajuri dihi	21.863644	85.293346	664.9	300	7.2	139	4.52	Pond	
4	KJSA Steel Plant	21.963844	85.317	577	650	7.5	360	3.28	Mine pit	
5	Near Tensa Road	21.868889	85.187991	619.85	20	5.9	10	1.38	Open well	
6	National Enterprise	21.84094	85.34045	867.2	190	7.2	80	3.1	Pond	
7	Raikela Iron Mine	21.876188	85.196579	572.02	680	7.1	350	4.73	Pond	
8	Raikela Iron mine	21.878495	85.197651	571.44	20	6.3	10	4.24	Open well	
9	Comanado Steel Plant	21.918085	85.209714	573.27	450	6.8	240	5.94	Pond	

7.3. Monitoring, Measurement and Capacity building

Monitoring and measurements of several parameters are part of water conservation strategy towards the motive of efficient management of water. The withdrawal of groundwater is regularly monitored and measured from the existing dug well. The water level is found at 3.7 to 36.3 m bgl in premonsoonal period, which varies from 2.5-5 m bgl in the monsoonal period. The Dholta pahar mine conducts regular capacity building of its maintenance staff that monitors and measures and keeping record of various data related to water use and water conservation. The workers have been trained for keeping record and onward submission of data as per the requirement. For monitoring of groundwater level in the area of Dholta pahar mine, as per the guideline of CGWA, a piezometer has to be constructed at the area. The installation of piezometer is proposed exclusively for monitoring of groundwater level deploying automatic water level recorder with telemetric arrangement of data transmission.

Hydrogeological Investigation and Impact Assessment Report for Dholta Pahar for Iron Ore, Sundergarh District, Odisha

4. Impact assessment of mining of Iron ore on Ground Water in and around Netrabandh Pahar, Sundergarh-

Click to view

Comprehensive Report on: Groundwater Condition in both core and buffer zone of Netrabandha Pahar (West) Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/s RAGA TRADECON PVT. LTD. (APPLICANT) 1st FLOOR, SHYAM RESIDENCY, FLAT NO. 101, BHUBANESWAR-751006, Email id: ragatradecon@gmail.com

Comprehensive Report on: Groundwater Condition in both core and buffer zone of Netrabandha Pahar (West) Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

Executive summary

M/S. Raga, Tradecon Pvt Lmt Bhubaneswaris located in Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Bhaliadihi village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Sanputli village is 1 km away from the study area. M/S. Raga, Tradecon Pvt Lmt operates as a manufacturer of sponge iron, billet and ingots and exporter of minerals. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. During the plan period, it has been proposed to produce 1.0 MTPA iron ore per annum. The present study is made for obtaining NOC from CGWA for extraction of maximum 62 KLD of ground water during mining operation as per the approved mine plan. The present report is based on the Hydrogeological investigation made within core zone i.e 2km radius and buffer zone i.e 10km radius from mine lease, for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining NOC. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic. The study area is located in Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha which falls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation name Singbhum-Keonjhar-Bonai group of iron ore of Precambrian age. These constitute hard rock's includes schist, tuffs, phyllite, basic rock, BHQ/BHJ have been classified as Iron Ore Series (IOS). Aquifers are developed only in the low lying area and valley parts of the study area. The total lease area of the proposed Netrabandha Pahar Fe ore block is 74.3700Ha (743700 m²). Groundwater quality is fresh and potable in both core and buffer zone area and EC below 1900 ppm and TDS varies from 10 to 310 ppm in the study area. As per the approved mine plan 124.08 KLD is required for running the mining activity, no water discharge generating during mining activities. Rainwater is harvested within the ML area through construction of water conservation pond and Roof Top RWH structures. The annual conservation through RWH is about 18,576 m³/yr. There is no impact on groundwater because of open cast mining. For the running of mine 124.08 KLD water is required, 62 KLD from ground water and 62.08 KLD will be arranged from RWH and recycle water. Thus, the study recommends NOC may be provided for next 5 yr with maximum 62KLD extractions from groundwater.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/S. Raga, Trade con Pvt. Lmt. Odisha is thankfully acknowledged.

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/S. Raga, Trade con Pvt. Lmt. Odisha is thankfully acknowledged.

Discussions with Mr. Pradeept Mohapatra, Director WCS, regarding the geology of lease area and plan our investigations according to scope of work is gratefully acknowledged. Help rendered by Shri Shubham, Geologist, Shri. Prabhat, M/S. Raga, Tradecon Pvt Lmt, Odisha in every stage of planning and Field verification, investigations in and around lease area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records many of them are reproduced in this report and forms part of annexure section.

At lease area, during days of field investigation we have received warm welcome and all hospitality and requisite support from mine team. We thankfully acknowledge Mr. Pradeept Mohapatra, Director WCS and his team for their cooperation.

The report has been prepared by Ms Sheha Rai, Asstt Prof MRCAWTM and Sandeep Kumar Research Assistant, MRCAWTM under the supervision of Prof (Dr) Arunangshu Mukherjee, Director MRCAWTM. Ms Alifia Ibkar, RA MRCAWTM helped Mr Sandeep Kumar in the field work and data collection.

It is to certify that MRCAWTM have investigated the area of Netrabandha Pahar Fe ore block of Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Based on actual data collected from field and literature survey done, has prepared the report as per the format of CGWA.

Hound

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies (Deemed to be University under section 3 of the UGC Act, 1956) Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121

CONTENTS

Execut	ive summary	
Acknow	wledgement	
Format	t of Report	
Sr. NO.	DESCRIPTION	PAGE NO.
1.	Introduction	1-9
	1.1 Objective	1
	1.2 Scope of study	3
	1.3 Project description	3
	1.4 Land use and land cover change in the study area	4
	1.5 Topography and drainage	7
2.	Groundwater Situations	10-26
	2.1 Geology and geomorphology	10
	2.2 Climate and Rainfall:	15
	2.3 Groundwater regime monitoring	15
	2.4 Long term groundwater trend	21
	2.5 Groundwater quality	22
3.	Approved Mine Plan	28-39
	3.1 Exploration Plan	31
	3.2 Mineralization details	31
	3.3 Mining Operations	34
4.	Proposed utilization of water for Mine Operation	40
5.	Comprehensive assessment of the impact on the ground water regime	41- 45
	5.1: Impact on surface water sources	42
	5.2: Impact on groundwater sources	42
	5.3 Socio-Economic	44
6.	Proposed measures for disposal of wastewater by mine drawing saline water	46
7.	Water conservation	46- 50
	7.1: Water use and water balance	46
	7.2 Rainwater Harvesting & Artificial recharge	46
	7.3 Monitoring, Measurement and Capacity building	49
8	Any other details pertaining to the project	50

LIST OF TABLES

SR. NO.	DESCRIPTION	PAGE NO.
1.1	LULC 2017 of study area	06
1.2	LULC 2021 of study area	06
1.3	LULC in core zone within the mine lease area	7
2.1	Startigraphy of Koira Group in Sundergarh district, Odisha	13
2.2	Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020	15
2.3	Well inventory data of Dug wells of Core and buffer zone of Dholta Pahar Fe ore Mine	16
2.4	Block wise Dynamic Groundwater Resources of Koira block, Sundergarh district, Odisha	22
3.1	Initial/subsequent Lease grant details	28
3.2	Land Ownership Details	28
3.3	Location of Boundary Pillars	28
3.4	Mining Plan/ Review of Mining Plan at Glance	29
3.5	Threshold value & Cut off Parameters	31
3.6	Mining Factors or Assumptions	33
3.7	Mineral Reserve	33
3.8	Mineral Beneficiation / Processing	34
3.9	Tentative Production Summary year wise	35
3.10	Total ROM and waste generation	38
4.1	Annual requirement of water from all sources & Reduction of GW consumption	40
5.1	Crop production details of Sundergarh District Odisha in Kharif and Rabi Season	44
5.2	Population data of study area in part of Koida tehsil, Sundergarh district, Odisha	45
7.1	Crop production details of Sundergarh District Odisha in Kharif and Rabi Season	47
7.2	Pond and Water bodies in study area	49

LIST OF FIGURES

Sr. No.	DESCRIPTION	PAGE NO.
1.1	Location Map of Netrabandha Pahar Fe Ore Mine, Odisha	2
1.2 1.3	Google Image showing proposed area of Netrabandha Pahar Fe ore mine Map showing LULC of Netrabandha Pahar (West) Fe Ore Mine of 10km buffer zone	4 5
1.4	(Jan 2017) Map showing LULC of Netrabandha Pahar (West) Fe Ore Mine of 10km buffer zone (Jan 2021)	5
1.5	Topography map in 10km buffer zone	8
1.6	Slope map of Netrabandha Pahar (West) block Fe mine	8
1.7	Drainage map and digital elevation map in 10km buffer zone	9
2.1	Schematic diagram of stratigraphic setting of three BIF of IOSG (Beura et al.2016	11
2.2	Stratigraphic Succession of Iron Ore Super Group of Odisha (Beura et al.2016)	12
2.3	Geomorphological cum Geology map of Netrabandha Pahar (West Fe Mine	14
2.4	Hand pump and bore well in core zone of Netrabandha Pahar (west) block	18
2.5	Map showing study area in the state Odisha	19
2.6	DTW map of core and buffer zone.	20
2.7	Groundwater contour map of Netrabandha Pahar (west) block Fe ore mine area	21
2.8	Long term well hydrograph of wells of Sundergarh district, Odisha (source: WRIS portal)	22
2.9	TDS map of Netrabandha Pahar block Fe ore mine	23
2.10	EC map of Netrabandha Pahar block Fe ore mine	23
2.11	Sub-divisions of the diamond field	24
2.12	Water Quality Data in Piper Trilinear Diagram in study area	25
2.13	US Salinity diagram , Sundergarh district , Odisha	27
3.1	Bore location in lease area of Netrabandha Pahar Fe ore mine	32
3.2	Year wise development section	36
3.3	Five years development Plan	39
5.1	Pond and Hand pump in core zone of lease area	42
5.2	Google elevation profile of study area around Netrabandha Pahar Fe ore Mine from three directions	43
7.1	Existing rainwater harvesting pond and mine pit storage tank in study area	48
7.2	Design of proposed rooftop rain water harvesting structure	50

Report on

Hydrogeological Investigation and Impact Assessment Report for Netrabandha Pahar (West) Block for Iron Ore Sundergarh District, Odisha

Introduction

The report is prepared as per the format prescribed by CGWA for impact assessment study, the Introductory chapter comprises the following subtitle for describing its

- 1.1 Objectives
- 1.2 Scope of the study
- 1.3 Project description-Plant, process, product and location
- 1.4 Land Use Land Cover and percentage of LULC categories
- 1.5 Topography and drainage

1.1 Objective

The Central Government had constituted the Central Ground Water Board as Authority vide notification number S.O. 38 (E), dated the 14th January, 1997 to exercise powers under sub section (3) of section 3 of the Environment (Protection) act, 1986 (29 of 1986) for the purposes of regulation and control of Ground Water Management and Development. The Authority has been regulating ground water development and management by the way of issuing 'No Objection Certificates' for ground water extraction to industries or infrastructure projects or Mining Projects etc., and framed and issued guidelines in this connection from time to time. The entire process of grant of No Objection Certificate shall be online through a web based application system. The latest guideline issued by Gazette Notification no 2941 on 24th September 2020 supersedes all earlier guidelines issued by the Central Ground Water Authority (CGWA). As per the CGWA guideline the M/S. Raga, Tradecon Pvt Lt Bhubaneswar has to submit Impact assessment report along with undertaking for processing their application for regularization of groundwater abstraction for mining. There by M/S. Raga, Tradecon Pvt Lmt Bhubaneswar through WCS Bhubaneswar has engaged MRCAWTM, CGWA Accredited Groundwater Institution (Certificate No.-CGWA/RGI/025) vide work order dated 4th April 2022 to carry out the hydrogeological investigation along with impact assessment study incorporating socio-economic assessment study on groundwater regime due to withdrawal/ dewatering of groundwater by the proposed Netrabandha Pahar (West) Block Iron Ore mine (Fig 1.1) as per the prescribed format of CGWA.

Fig 1.1: Location Map of Netrabandha Pahar Fe Ore Mine, Odisha

1.2. Scope of the study

The scope of study includes hydrological study around mine and providing certificated report along with providing guidance on techno-legal aspects and compliance for obtaining NOC from CGWA as per latest guidelines. Detailed hydro geological investigations within core and buffer zones (10km radius study area) of Netrabandha Pahar (West) Block for Iron Ore leased to M/S. Raga, Tradecon Pvt Lmt Bhubaneswar and assessment of impact of mining on groundwater regime in the study area which covers parts of Koira Tehsil of Sundergarh district, Odisha. As the mine is generating only 117.5 m3/day discharge thus groundwater modeling is not required along with impact assessment report for this case as per the CGWA guideline.

1.3. Project description

M/S. Raga, Tradecon Pvt Lmt. Bhubaneswar is a registered firm under Minerals (Development and Regulation) ACT, 1957 and The Mineral (Auction) Rules, 2015, Govt of Odisha. Netrabandha Pahar (West) iron ore Block located in Koira Tehsil of Sundargarh district of Odisha. The corporate identity Number of the company is U51420MH1995PTC162317. The total lease area of Netrabandha Pahar (West) Iron ore mine is 74.3700 ha. As part of the statutory clearance, the Mining Plan and Progressive Mine Closure Plan is prepared under Rule 16(1) of MCR, 2016 and Rule 23 of MCDR, 2017 respectively for a period of 5 years from the date of opening of the mine for grant of Mining Lease in favor of M/s Raga TradeconPvt Ltd. The registered office is situated at State of Maharashtra(Mumbai) having is regd. office at 503, 5th floor, Greenland Apartment, Building no.3, JB Nagar, Andheri East, Mumbai- 400059, Maharashtra to carry on all or any of the business as manufacturers, buyers, sellers, suppliers, traders, exporters, minerals, metals etc. The company has planned to establish pellet plant in Sundergarh/Keonjhar district of Odisha with a period of two years. Total ore reserve estimation in the lease area is 17274072 tonnes. Estimated total production of ore during five year would be 3249000 tones. Therefore. remaining reserves will be 17274072MT-3249000MT=14024082MT. The production of Iron Ore @ 1000000MT per annum, life of the mine will be 14024082MT/1000000MT=14.02 years say 14 years. Therefore life of the mine will be 19 years which includes 5 year of plan period and 14 years of conceptual period. During the plan period, it has been proposed to produce 1.0 MTPA iron ore per annum. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc

Location

M/S. Raga, Tradecon Pvt Lmt Bhubaneswaris located in Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Bhaliadihi village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Sanputli village is 1 km away from the study area. Nearest railway station is Barsuan which is 23 km away from the lease area. The lease area of mine (Fig 1.2) is not located within 10km radius of

National Park /Wild Life Sanctuary / Protected area and don't falls under Coastal Regulation Zone (CRZ). Few shallow depth open cast pits mine are present in the study area.

Fig 1.2: Google image showing proposed area of Netrabandha Pahar (West) block iron ore mine pillar location.

1.4. Land use and Land cover (LULC) change in the study area

The total lease area of the proposed Netrabandha Pahar (West) block iron ore mine is 74.3700 ha (743700 m²). The mine area is situated in outer part of the Bhaliadihi village surrounded by hills and forest area. The land use of the mining area is given in Table no 1.1 the percentage has been represented through a pie diagram in. The nearest village is Jatapur Khappa located 0.8 km away from Netrabandha mine. Around 40 villages are located under 10km radius zone of the study area. (Annexure-1)

Comparison of LULC during 2017 and 2021 within the 10 kms radius of mine area show marginal changes in agriculture use, forest cover, built up area, as shown in figs and tables -1.1 & 1.2, however area under water body has increased from 4.683 ha to 41.484 ha due to accumulation of water into someabandon mine pitsand due to construction of water conservation structures in the area.

Fig: 1.3 Map showing LULC of Netrabandha Pahar (West) block Fe Ore Mine of 10km buffer zone (Jan 2017)

Hydrogeological Investigation and Impact Assessment Report for Netrabandha Pahar (West) Block for Iron Ore, Sundergarh District, Odisha

Fig 1.4: Map showing LULC of Netrabandha Pahar (West) Fe Ore Mine of 10km buffer zone (Jan 2021)

SI.N o	LULC Type 2021	Area(Ha)		
1	Built up land	272.881		
2	Cropland	2350.058		
3	Forest	20449.000		
4	Open land	22.595		
5	Scrubland	8272.331		
6	Water Bodies	41.484		
7	Flooded vegetation	7.195		
Total /	Area(10 km Buffer Zone)	31415.545		
	LULC Type 2017	Area(Ha)		
1	LULC Type 2017 Built up land	Area(Ha) 193.470		
12	LULC Type 2017 Built up land Cropland	Area(Ha) 193.470 2301.253		
1 2 3	LULC Type 2017 Built up land Cropland Forest	Area(Ha) 193.470 2301.253 21060.994		
1 2 3 4	LULC Type 2017 Built up land Cropland Forest Open Land	Area(Ha) 193.470 2301.253 21060.994 45.407		
1 2 3 4 5	LULC Type 2017 Built up land Cropland Forest Open Land Scrub Land	Area(Ha) 193.470 2301.253 21060.994 45.407 7809.776		
1 2 3 4 5 6	LULC Type 2017 Built up land Cropland Forest Open Land Scrub Land Water Bodies	Area(Ha) 193.470 2301.253 21060.994 45.407 7809.776 4.683		

Table 1.1: LULC 2017 of study area

Table 1.3 LULC in core zone within the mine lease area						
SI. No.	Particular	Particular Area put to Use at Start of Year (ha) (A)*		Total (ha) (C = A + B)		
1	Area under Mining	0.00	4.012	4.012		
2	Topsoil stacking	0.00	0.00	0.00		
3	Overburden/Waste Dumping	0.00	1.375	1.375		
4	Mineral Storage	0.00	7.087	7.087		
5	Infrastructure (Workshop, Administrative Building,Magazine with safety zone, Parking Plaza and safety zone.)	0.00	4.592	4.592		
6	Roads	0.00	4.339	4.339		
7	Railways	0.00	0.00	0.00		
8	Tailing Pond	0.00	0.00	0.00		
9	Effluent Treatment Plant	0.00	0.00	0.00		
10	Mineral Separation Plant	0.00	1.147	1.147		
11	Township Area	0.00	0.00	0.00		
12	Others to Specify(Check Dam)	0.00	0.00	0.00		
	Total	0.000	22.552	22.552		

1.5. Topography and Drainage

Netrabandha Pahar (West) block is a part of Koira group of upper Shale formation. Study area having steep rising hills with intervening steep gorge and narrow valley. The geomorphic sub-units like the pediments, pediplains, buried pediments, valley fills, and lineaments are the predominant in the hard rock areas in study area. The highest elevation is 867.2m amsl and lowest elevation is 366.28m amsl.(Fig 1.3 & 1.4)

Study area is covered with different hills with intervening intermontane valleys, isolated hillocks and flat to gently undulating plains. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic. (Fig 1.5)

Fig 1.5: Topography Map of 10km buffer zone.

Fig 1.6: Slope map of Netrabandha Pahar (West) block Fe mine in 10km buffer zone.

Fig 1.7: Drainage map and digital elevation map in 10km buffer zone

2. Groundwater Situations

Sundergarh district is North Western part of Odisha state. Sundargarh is recognized as an industrial district in the map of Odisha. Steel Plant, Fertilizer Plant, Cement factory, Ferro Vanadium Plant, Machine building factory, Glass and China clay factory and Spinning mills are some of the major industries of this District.Large part of the study area belongs to Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Ground water is the main source of drinking as well as industrial and domestic purpose. However, the requirement of water in irrigation and agriculture is fulfilled mainly by river, canals as well as by rainwater. The rainwater also is the main source for recharge of groundwater of the area. The following major subtopics that are covered in this particular chapter are:

- 2.1Geology and Geomorphology
- 2.2 Climate and Rainfall pattern
- 2.3 Groundwater regime monitoring
- 2.4. Long term groundwater trend
- 2.5 Groundwater resources
- 2.6 Groundwater quality

2.1 Geology and Geomorphology

2.1.1. Regional Geology

Sundergarh district is rich in Iron ore, limestone, manganese, dolomite, and fire clay. Banded Iron Formation (BIF) and Iron ore deposit occupy three distinct provinces surrounding the North Odisha Iron Ore Craton (NOIOC). They are Bonai-Keonjhar belt in the western side of the Craton, Badampahar Gorumahisani- Suleipat belt in the eastern flank and Daitari-Tomka belt in the southern side of the Craton. All of these three belts having best preserved basin of Precambrian age that form Iron Ore Super Group (IOSG) of Odisha. Sundergarh district lies under Western flank by the Bonai –Keonjhar (BK) belt forming U shaped synclinoriumwhich is known as the Horseshoe belt. Iron Ore Super Group (IOSG) Odisha, rock assemblages is belonging to Singhbhum – North Odisha Iron Ore Craton. There are three or more Iron Ore Group existing in the IOSG such as Badampahar Group, Noamundi Group and Koira Group. These groups are separated by unconformity, different metamorphic grade, distinct sedimentary and igneous assemblages and ore types. (Fig 2.1) The Mayurbhanj granite occurring along the eastern fringe of the Singhbhum granite was dated to be 3100Ma. The A type Mayurbhanj Granite Pluton (3.09Ga) occurring along the eastern margin of the Singhbhum – Odisha Craton, eastern India, represent the final phase of acid plutonism in this crustal

block of Archaean age.

I. BIF-1: Badampahar – Gorumahisani – Sulpet Belt

BIF-1 comprising of iron formation of Badampahar Gorumahisani – Sulpet (BGS) Belt. The litho assemblage of this oldest Iron Ore Group consists of banded cherty quartzite, tremolite- actinolite schist and fuchsite quartzite. The Badam Quartzite is well exposed in the western side of BGS. Banded magnetite quartzite is the dominant litho unit in the BIF-1. The major mineral constituents are Magnetite, martite, hematite, specularite, goethite, grunerite, and quartz. The BIF-1 has suffered amphibolites facies of metamorphism.

II. BIF – II: Daitari- Tomka Belt

The BIF-II lying in the southern portion of the North Odisha Iron Ore Craton is confirmed to Daitari – Tomka belt. It is underlain and overlain by Badampahar quartzite and Dhanjori quartzite. The litho assemblage of this belt consists of banded magnetite/hematite quartzite, banded magnetite/hematite jasper, quartz sericite schist, phyllite, slate and banded chert. The rocks of BIF –II attain green schist facies of metamorphism.

III. BIF – III: Bonai- Keonjhar Belt:

BIF-III is a U- shaped pattern in the western flank of the NOIOC that rests over the Dhanjori Quartzite. The litho association of this area forms the youngest Iron Ore Group comprising of banded hematite jasper, banded hematite quartz/cherty, banded shale, banded manganese formation and ferruginous shale. The banded iron formation consist of predominantly iron oxide mineral such as hematite, martite, specularite, and magnetite. The litho assemblage of this youngest iron ore belt is unmetamorphosed and lack of intrusive. (Fig 2.2)

Fig 2.1: Schematic diagram of stratigraphic setting of three BIF of IOSG (Beura et al.2016

Fig 2.2: Stratigraphic Succession of Iron Ore Super Group of Odisha (Beura et al. 2016).

2.1.1. Local Geology

The study area is occupied by the rocks of Koira Group (Table 2.1). This belt is 60 km long and 25 km wide extending from south of Malangtoli in Keonjhar district up to Chakradharpurin West Singhbhum district (Jharkhand). The western syncline known as Koira syncline, due to steep dip and

overturned nature of its limb forms a deeper basin with thick sequence of younger shales in the core region. On the other hand, the eastern syncline known as Bamebari syncline is a shallower basin and exposes younger litho members within the core region as outliers. The Upper shale unit within the Koira syncline is more or less continuous. The general strike of beddingis in N100W–S100E direction with occasional swing to N300E-S300W, having 20° - 40° dip towards west in the area. The area under investigation lies within the Upper Shale Formation of the Koira Group as described by Murthy & Acharya (1975)

Table 2.1: Startigraphy of Koira Group in Sundergarh district, Odisha						
	Soil Laterite					
Koira Upper ShaleFormation Shale's of different color like purple, yellow with inter b						
Group		Iron ore				
-	Banded Iron Formation	Coarsely banded BHJ followed up by finely banded BHJ and				
		iron ore in the eastern block.				

Netrabandha Pahar Iron ore Block of M/s Raga Tradecon Pvt Ltd is belonging to Singhbhum iron ore series and main rock type in the study area are Laterite, Hematite, and Shale. Geologically, the area is underlain by Pre – Cambrian crystalline rocks like Granite, Granitic Gneiss, Banded Hematite Jasper, Quartzite, Slate, Phyllite, and Mica Schist.

Laterite

Laterites are observed in the study area including ML area that has been the resulted from a process of residual weathering. Laterite has been developed mostly over the shale unit or low grade iron ores of the area. The shale rich in alumina has given rise to aluminous laterite and those rich in iron have developed ferruginous laterites. Ferruginous laterite occupies most of the high lands in the vicinity of iron ore of central ridge while aluminous laterite occurs in the extremeeast of the area.

Shale

Western side study area has occupied with fine laminated rock having different shades of colors ranging from brownish to purple grey. Different colors of the Shale are largely dependent of minerals compositions. It is mostly composed of clayey micaceous minerals, with lenses of chert.

Iron Ore

Iron formations are economically important meta sedimentary rocks that occurs most commonly in Precambrian sedimentary succession. Based on surface exposures and sub-surface geology 4 (four) types of iron ore are recorded in the explored block(Fig 2.1). These are Hard Laminated Ore (HLO), SoftLaminated Ore (SLO), blue dust (powdery ore), lateritic ore and float ores. The general strike of iron ore is in N100W–S100E direction with occasional swing to N300E-S300W, having 20° - 40°dip towards west in the study area.

2.1.3 Geomorphology & Soil Type

Geomorphology: The district has varied geomorphological features. The geomorphic units are (I) Plain (ii) Deep Buried Pediment (iii)Shallow buried pediment (iv) Intermontane valley (v) Inselberg, (vi) Mesa & Butte, (vii) Residual Hills, (viii) Intermontane Valleys, (ix) Structural hills. The soil characteristics of the district show wide variation depending upon their occurrence, physical and chemical properties. The soil of the district is broadly grouped into (I) Alfisols (II)Ultisols(CGWB Report).

I. Alfisoil and Red Soil

The study area is covered with red sandy soils and red loamy soils. These soils predominantly occupy high and medium land throughout the Sundargarh district. The characteristics feature of Red soil is porous and fragile in structure. These are usually deficient in nitrogen, phosphate, organic matter and lime. These soils are suitable for cultivation of paddy and other crops.

II. Ultisoils

The ultisols comprises mainly of lateritic soils and red and yellow soils. These soils are mildly acidic in nature and deficient in nitrogen, phosphorous and potassium and organic matters. Soils of the district are generally having average to good fertility status. All common types of crops can be grown in the district.

Fig 2.3: Geomorphological cum Geology map of Netrabandha Pahar (west) Fe Mine

2.2. Climate and Rainfall pattern

The climate of the district is sub tropical climate characterized with hot and dry summer, cold winter and erratic in rainfall. The winter season extends from November to end of February, which is followed by summer season from March to the middle of June, and rainy season from middle of June to middle of October. During summer months the maximum temperature rises up to 43° C and May is the hottest month. December is the coldest month of the year when the average daily temperature drops down to 8° C. Relative humidity is around 60-70% throughout the year. The highest and lowest monthly mean relative humidity so far recorded is 97% (Dec) and 26% (April). The annual rainfall of last decade is given in Table 2.2.

Year	Actual	Deviation	Year	Actual	Deviation	Average
	Rainfall	(%)		Rainfall	(%)	Rainfall
	(mm)			(mm)		(mm)
2011	1788.35	20.87	2016	1098.51	-28.82	1415.126
2012	1435.18	1.39	2017	1323.91	-6.8	
2013	1537.77	7.97	2018	1396.59	-1.32	
2014	1335.09	-5.99	2019	1387.02	-2.02	
2015	1286.6	-9.9	2020	1562.24	9.4	

Table 2.2 Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020

2.3. Groundwater regime monitoring:

The study area comprises 10km radius zone in Netrabandha Pahar (West) iron ore Block located in Koira Tehsil of Sundargarh district of Odisha.Detailed hydrogeological study of both core and buffer zone of mine area is carried out.The hydrogeological condition varied from place to place due to different litho unit of aquifer.The hydrogeological units of the study area are broadly categorized into twogroups namely.

- 1. Consolidated formations.
- 2. Unconsolidated formations

1. Consolidated formations

The study areais occupied by the consolidated formations comprising of Precambrian metasediments of Gangpur series and Iron ore series and also granite gneiss, metasediments like amphibolite, epidiorite etc. Ground water is stored mainly in the secondary porosity resulting from weathering and fracturing of the rocks. Ground water occurs under confined to semi-confined condition in the deeper fractured zones. Water yielding capacity is mainly depend on the extent of fracture, depth, opening and size of fracture. Mica schist, quartzite and phyllite are the formation in the study area.

Table2.3: Well inventory data of Dug wells of Core and buffer zone of NetrabandhaPahar (West) Mine (Lat & Long data are as per GPS reading, DO, EC, pH, and TDS measured on site using calibrated Hanna portable equipme during (April 2022).

CORE ZONE

Sr no	Location	Latitude	Longitude	Elevati on (m)	EC (μmS)	рН	TDS (ppm)	Depth of the well (m)	Water Level(m)	Diame ter(m)	D (m
1	Baldihi	21.87667	85.297367	625.4	580	6.9	310	70.5	36.3		
2	Baldihi	21.87741	85.298323	639.37				10.5	3.7	2.2	
3	Baldihi	21.87799	85.298723	640.23	150	6.8	70				2.0
4	Khajuridihi	21.86364	85.293346	664.9							4.
5	Teheri	21.8952	85.285082	623.02	70	6.4	40				6.
6	Ranisal	21.88696	85.304426	629.56	280	6.7	140				2.4
7	Ranisal	21.88416	85.305325	596.84							4
8	Ranisal	21.88596	85.304356	622.85	130	6.8	70	11.3	7.5	2.5	1.0
9	Ranisal	21.88695	85.304342	623.11	120	6.8	60	37.87	16.5		4.9
				Bu	ffer Zo	ne		·			
10	Paatmunda	21.87555	85.308419	617.73							1.
11	Paatmunda	21.87508	85.308162	623.8	100	6.4	50				3
12	Sargigarh	21.90469	85.30736	599.98	600	6.4	300	66.66	18.1		5.
13	Sargigarh, Govt UP School	21.90428	85.305595	608.55	90	6.5	50				4.0
	Sargigarh, Govt UP										
14	School	21.90414	85.305645	607.9	95	6.5	45				2.
15	Sainindipur	21.91163	85.295871	615.81	50	6.3	20				4.
16	Kalamang High School, Malda	21.95201	85.320045	567.21	450	7.2	220	72.72	30.3		3.
17	Guali Mine	21 96384	85 317	577							2
17	Rengalbed	21.50504	05.517	577							5.
18	a	21.95058	85.255734	562.95	40	7.6	20	69.69	30.3		6.
19	Kashira	21.93019	85.251827	565.3	40	6.5	20				5.9
20	Koira	21.91776	85.2543	568.87	65	6.5	25				3.9
	Koira, near										
21	bus stand	21.90696	85.248041	560.57	280	6.9	150				2.
	Koira, near										
22	Station	21.90702	85.239381	561.55	60	7.1	20	60.6	21.21		6
23		21.9094	85.232136	573.13	120	6.8	60	10.9	6.4	2.1	5.
24		21.91343	85.224078	559.84	60	6.5	25				5
25		21.90547	85.220677	552.92	70	6.1	40				3
26	Koira	21.90978	85.230875	558.29	120	6.8	60				5.
27		21.90204	85.250144	568.47	280	7.2	150				2.

28	Karketasai	21.9018	85.257257	581.28	85	6.9	40			2.4
	Radhe									
	Krishna									
29	Mandir	21.89531	85.240408	588.94	70	6.6	30			2.4
	Radhe									
	Krishna									
30	Mandir	21.8951	85.241608	589.1	30	6.4	20	60.6	26.2	5.1
31	Dengura	21.86933	85.200782	608.26	60	6.5	30			6.
32		21.88532	85.226671	605.57	60	7.2	30			6.0
33		21.88582	85.227661	604.12	75	6.9	35			3.
34	Paatmunda	21.8744	85.308941	608.23	90	6.5	50			6.0
35	Paturi	21.87887	85.314424	591.85	110	6.6	60			2.6
36	Ambilaam	21.88421	85.322733	592.69	80	6.7	40			3
37	Ambilaam	21.86698	85.347937	835.6	20	6.5	10			6.0
38		21.83836	85.336098	865.3	210	7.03	120			3.
39		21.84094	85.34045	867.2						3.
40	Koira	21.90933	85.235269	574.88	20	6.4	10			
41	Dhipasa	21.91018	85.230684	578.12	120	6.5	60			4.
	Comanado									
42	Steel Plant	21.91809	85.209714	573.27						5.9
	Comanado									
43	Steel Plant	21.91927	85.208213	576.61	60	6.7	30			2.1

2. Unconsolidated Formation

Laterite and alluvium are the main constituents of unconsolidated formation in the study area. The laterite is belonging to sub recent to recent age having high porosity. It is the good aquifer for dug well in study area. The alluvium soils are also the potential aquifers due to their high degree of porosity and permeability but are only limited in their occurrence.

2.3.1 Detailed study of core and buffer zone

As per the field investigation it has been observed the main source of water is from cannel and groundwater. Groundwater is withdrawal from bore well as well as from hand pump (Fig- 2.3). Most of the dug well having water level from 3.7 to 7.5m in pre monsoon period. Total depth of dug well is from 9 to 12m. It has been observed that the borewells are often from 16 to 30m in depth. Ground water is lying in weathered part of hard rock aquifer(Table 2.3). Hard rock comprisesPrecambrian metasediments Like Mica schist, quartzite, phyllite, conglomerate along withgranite . The movement of the ground water in deeper rocks is controlled by the nature, size opening and continuity of joints & fracture present in them.Wells in hard rock generally yield 50 to 70 m3 /day of all the rock types. Schist, phyllite and their variants form very poor aquifers yielding 10 to 30 m3 /day for heavy drawdown. Well inventory of study area (Fig 2.4) in Pre Monsoon (April 2022) period showing groundwater level varies within the range from 3.7 m to 36.3m bgl (Table 2.3)

Fig 2.4: Hand pump and bore well in the core zone of Netrabandha Pahar (west) block

2.3.2 Aquifer Characteristics: The study area both core and buffer zone having largely single aquifer of unconfined nature, developed on the weathered part of rocks of Koira Group and laterites. The hill top areas are devoid of any aquifer. Aquifers are developed only in the low laying areas and valley parts of the study area.

The discharge varies from 10 to 70m3/day depending on lithology of aquifer. The transmissivity and storativity is mainly low and drawdown are moderately high to high. Open wells having sustainable yield round the year. The area is categorized under safe zone according to the latest GWR estimation. Ambient quality of groundwater is fresh.

Fig 2.5: Map showing study area in the state Odisha. Pillar location of Netrabandha Pahar (West) at center and position of other villages on google image along with prominent roads. Inventory of wells of these villages are carried out under groundwater regime monitoring.

DTW Map of Core and Buffer Zone of Netranbandha Pahar Fe ore Mine

Fig 2.6: DTW map of core and buffer zone.

Groundwater Flow:

The groundwater contour map generated using the intense monitoring in core and buffer zone of mining is depicted in Fig 2.6. The map showing clear cut development of groundwater dived running through the mine area. The GW flow direction largely coincides with the surface water flow direction as shown in fig 1.5. Thus mine is on groundwater divide and any dewatering from mine will not effects significantly the flow direction of groundwater of the area.

Fig 2.7: Groundwater contour map of Netrabandha Pahar (West bloc) Fe mine area INDEX – Light Green line shows groundwater division, arrows indicate groundwater flow direction, values indicate groundwater elevation (m amsl), dots indicate data point used for generation of gw contour, buffer zone is marked by 10 km radius circle. Note the mine position is (Red dot).

2.4 Long term groundwater trend

The study area comprises 10km radius zone in Netrabandhapahar (West) block mine that largely fall under Koira tehsil, Sundergarh district, Odisha. In the core zone villages the source of ground water such as bore well; hand pump and pond are used for domestic, irrigation and drinkingwhereout of 3 observation location of dug well, it has been observed that the water level (Pre monsoon 2022) varying from 3 to 7.5m bgl. Long term trend analysis of data obtained from WRIS shows no significant change-rise or fall as depicted in **Fig: 2.5**

Fig 2.8: Long term well hydrograph of wells of Sundergarh district, Odisha (source: WRIS portal)

2.4.1Dynamic Groundwater Resource of study area:

The groundwater resource as estimated by CGWB (2020) is presented in the table 2.4 for Koira block of Sundargarh district Odisha and is in safe category.

	District	Block	Mor Recl from Rain	Ground nsoon Se harge n nfall	water Recl eason Recharg e from other sources		harge Nor Rec fror Rair	e (Ham) 1 Monsoor harge n 1fall	n Season Recharge from other sources	Total Ground water Recharge (Hamm)	Total Natural Dischar ge (Ham)	Annual Extractable ground water resources (Ham)
1	Sundergarh	Koira	477	7.33	139	9.58	572	.73	172.14	5661.78	283.09	5378.69
	Annual Extractable Ground water Resources (Ham)	Annua Irrigati	l Grou ion	undwato Industri	er Di ial	raft (Ha Dome	am) estic	Total Extract ion	Annual GW allocation for Domestic use as on 2025 (Ham)	Net Groundwat er availability for future use (Ham)	Stage of Ground water Extracti on (%)	Categorizatio n (over exploited/ Critical/semi critical/ safe/ saline)
2	5378.63	873.45	;	290.16		265.2	5	1428.8	304.71	3910.38	26.57	Safe

Table: 2.4 Block wise Dynamic Groundwater Resources of Koira block, Sundergarh district, Odisha

2.5 Groundwater Quality

Based on the above study, different ground water parameters were computed, which include pH, TDS, EC, DO, Temperature. Ground water in study area is potable with pH ranging 5.9 to 7.6 and total dissolved solid (TDS) ranging from 10 to 310 ppt and EC ranging from 20 to 600 μ S. (Fig 2.9 and 2.10) Groundwater quality in the study area is fresh and all major and trace elements are found within the BIS 10500 permissible limit. Thus is suitable for all domestic, industrial and irrigational use. The general parameters of groundwater in study area

as analyses are given in Table 2.5. The comparison of data reveal that the area mining (Project Area) is having less TDS).

Fig 2.9: TDS map of Netrabandha Pahar block Fe ore mine

Fig 2.10: EC map of Netrabandha Pahar (West) block Fe ore mine

Water Quality Data in Piper Trilinear Diagram: Different graphical methods can be adopted for representing geochemical variation which gives a better insight into the groundwater quality monitoring. One such efficient method of representation is plotting of Hill Piper Trilinear diagram in which data are plotted in two triangle fields and one diamond field. The diamond is then classified under various categories emphasizing their characteristics.

Fig2.11: Sub-divisions of the diamond field

On the basis of data collection from CGWB report (2020-2021). It has been observed that out of 63 samples are concentrated in Area 6 indicating that: Non-carbonate hardness exceeds 50% i.e., Ca + Mg - (SO4 + Cl + NO3). 50% samples are lies under area 4 representing strong acids (SO4 + Cl + NO3) exceed weak acids (CO3 + HCO3). Few samples can be noticed under Area 7: Non-carbonate alkali exceeds 50% i.e., Na + K- (SO4 + Cl + NO3).

Fig 2.12: Water Quality Data in Piper Trilinear Diagram in study area

USSL Diagram: The United States Salinity Laboratory (USSL) (1954) and Wilcox (1955) established standards for irrigation water quality classification. The Fig.7.5 is a simple scatter chart of sodium hazard (SAR) on the Y-axis versus salinity hazard (EC) on the X-axis. Using the SAR and the EC value of 41 water samples of Balaghat area determines the quality classification of the water. Based on the EC, irrigation water can be classified into four categories; include:

- I. Low-salinity water (C_1) can be used for irrigation with most crops on most soils with little likelihood that **soil salinity** will develop.
- II. Medium-salinity water (C_2) can be used if a moderate amount of leaching occurs. Plants with moderate salt- tolerance can be grown in most cases without special practices for salinity control.
- III. High-salinity water (C_3) cannot be used on soils, special management for salinity control may be required and plants with good salt tolerance should be selected.
- IV. Very high salinity water (C_4) is not suitable for irrigation under ordinary conditions.

Sodium Adsorption Ratio: High sodium in irrigation water reduces the permeability of soil. The USSL diagram based on SAR divided to four categories included:

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$

- I. Low-sodium water (S_1) can be used for irrigation on almost all soils.
- II. Medium-sodium water (S₂) will present an appreciable sodium hazard in certain finetextured soils. This water may be used on coarse-textured or organic soils with good permeability.
- III. High-sodium water (S_3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management.
- IV. Very high sodium water (S_4) is generally unsatisfactory for irrigation unless special action is taken, such as addition of gypsum to soil (Lyerly and Longenecker, 1957).

Fig 2.13: US Salinity diagram, Sundergarh district, Odisha

Data Analysis:

On the basis of data collection from CGWB report (2020-2021). It has been observed that out of 63 sample, most of the samples are concentrated under C2S1, C2S2 and C3S2 categories indicating low to medium sodium hazards with medium salinity. Out of these, few samples are scattered under C3S1 and C3S2 categories representing high salinity with low to medium sodium hazard. Few samples are scattered in C1S1 indicating low sodium hazards with low salinity.

3. Approved Mine Plan

Government of Odisha has issued letter of Intent (copy enclosed as Annexure-III) under Rule 10(2) of Mineral Auction Rules 2015 to M/s Raga Tradecon pvt Ltd for grant of Mining Lease for Netrabandha Pahar (West) Block for iron ore over an area of 74.3700Ha near Baliadihi village, Koira Tehsil of Sundergarh district of Odisha for a period of 50 years.

M/s Raga Tradecon Private Limited has planned to establish one beneficiation and pellet plant in Keonjhar/Sundargarh district of Odisha within a period of two year. Iron ore produced from the block will mostly be utilized in the pellet plant. The iron ore will also be utilized by conversion method in the sponge plant for which Raga tradecon pvt ltd has planned to make an arrangement sponge plant. However, as per the market demand, part of the iron ore may be sold to the consumers

Grant	From	То	Lease deed execution date	Lease registration date
LOI issued vide no 8722/IV(B)SM- 53/2021/SM, Bhubaneswar, dated 28.10.2021	Date of Execution of the Lease deed	50 years W.E.F date of execution of lease deed		

Table 3.1- Initial/subsequent Lease grant details

Table 3.2- Land Ownership Details

S.No	Village	Taluka	Area (Ha)	Khasra No/ Compartment No.	Type of Land	Nature of Land
1		Koira	74.370	Forest Khata	Reserve Forest	Govt Land

Table 3.3- Location of Boundary Pillars

Pillar No.	Pillar Latitude (dd:mm:ss.ss)	Pillar Longitude (dd:mm:ss.ss)
1	21°52′ 58.66927″ N	85°16′46.84900″ E
2	21°52′ 44.60249″ N	85°16′ 49.22482″ E
3	21°52′ 44.97118″ N	85°16′ 52.67427″ E
4	21°52′ 20.13448″ N	85°16′ 56.99025″ E
5	21° 52′ 21.842″ N	85° 17′ 16.168″ E
6	21 [°] 52′ 52.774″ N	85° 17′ 10.449″ E
7	21°52′53.367″ N	85°17′ 15.901″ E
8	21°53′01.24710″N	85°17′14.57591″ E

1	Name of the lessee	M/S Raga Tradecon Pvt. Ltd.
2	IBM Registration no.	Not obtained.
3	Address of lessee	1 st floor, Shyam Residency,Flat No 101, Bhubaneswar-751006
4	Name of Mine	Netrabandha Pahar (West) block for iron ore
5	Mine code	Not Obtained
6	Lease area in hects.	74.370
7	Forest area	52.056Ha.
8	Name of Mineral	Iron Ore
9	Lease period from – to	LOI issued vide no 8722/IV(B)SM- 53/2021/SM, Bhubaneswar, dated 28.10.2021 50years W.E.F date of execution of lease deed
10	Plan proposal period.	5year w.e.f date of execution of lease deed
11	Mineral Reserve(111,121&122) in tonnes	111-0
		121-0
		122- 17274072.2
		Total-17274072.2
12	Mineral	211-0
	Resource(211,221,222,331,332,333&334)	221-0
	in tonnes	222-753821
		331-0
		332-18027893.0
		333-0
		334-0
		Total-18781714
13	Total (reserve resource) in tonne	18781714
14	Reserve estimation as on	Date-Date of execution of lease deed
15	Explored area in ha	G1 – 0
		G2-74.370
		G3-0

Table: 3.4- Mining Plan/ Review of Mining Plan at Glance

		Explored and found Non-mineralized
		area – 42.41
		Un – explored area -Nil
		Total – 74.370
16	Exploration proposal Year wise No. of	1st year - nil
	Bore Holes	2nd year – 25nos
		3rd year - 24 nos
		4th year – nil
		5th year - nil
17	Production proposal Rom in toppes	1st year - 399990
		2nd year - 450000
-		3rd year - 600000
		4th year - 800000
		5th year - 1000000
18	OB/Waste handling proposal CUM	1st year - 65518
		2nd year – 41982
		3rd year – 66408
		4th year – 315008
		5th year –319543
19	Present EC permission in tonnes	Since it is a fresh lease, the lessee will
		obtain EC before Execution of the
		lease deed.
20	Present forest clearance area in ha	Since it is a fresh lease, the lessee will
		obtain FC before Execution of the
		lease deed.
21	Plantation Proposal in five years in	1st year - 230
	numbers	2nd year – 230
		3rd year – 230
		4th year – 200
		5th year –200
		Total Plantation-1060
22	Plantation Proposal in five years (ha)	1st year - 0.25
		2nd year – 0.25
		3rd year – 0.25
		4th year – 0.20
		5th year – 0.20
		Total Area- 1.15
23	Back filling proposal in hectares in five years(years wise)	Not Applicable
24	Check Dams numbers in five years	Nil
25	Garland drain in meters five years(years wise)	1st year - 258
		2nd year – 0.0
		3rd year – 0.0
		4th year – 0.0
		5th year – 0.0
26	Settling ponds (Numbers)(years wise)	1st year - 1
		2nd vear – 0

		3rd year – 0
		4th year – 0
		5th year – 0
27	Total Area put to use in mining and allied activity at end of five years in ha	29.143
28	Bank Guarantee Amount Rs	Not Applicable
29	Validity pf BG up to	Not Applicable

3.1. Exploration Plan

Iron ore in the Netrabandha Pahar west block occur as isolated bodies associated with buff coloured variegated shale and ferruginous shale. The ore bodies are capped by ferruginous laterite on surface. Though the ore types show out crops of hard ore, lateritic ore and float ore on the surface but soft laminated and powdery ore constitutes the thickness of the ore zone as evidenced from drill cores. As per the field visit float ore thickness varies from 0.50m to 5m. However, average thickness of float ore is around 2m.

The details of the drilling and ore horizons intersected in different boreholes, depth of bore holes drilled. The maximum over burden thickness of 24m is found in BH 10 while it is minimum in BH-7 i.e. 5.300 m. Basing on the observations of the litho log and assay log of the BH 2, 3, 5, 6, 8, 9, 13, 14 and BH 1 where only 3 m of low grade iron was intercepted beyond 24.20 m and surface exposures of ore bodies on mineralized zone area has been demarcated in the geological map. Out of the 15 BHs, only 6 BHs intercepted workable iron ore horizons.

3.2. Mineralization details

Depth of boreholes varies from 23m (BH 14) to 69m (BH 5) and cumulative thickness of ore bodies intersected at +55% Fe cut off is 106.3 m having average iron content of 61.093% Fe. The thickness of low grade ore zone (45 - 55% Fe) intersected in the bore holes varies from 1 to 10 m (BH15) having average iron content of 49.367% with a cumulative thickness of 59.7 m. Buff & white colored shale are found in the foot wall side, where as laterite ferruginous shale and a thin rim of floats occurs with an average thickness of 2m. The ore is mainly soft laminated type. Hard laminated ore occurs in only BH 7 at a depth level of 20 m from surface while Blue dust is encountered only in BH 12 for a thickness of 28.40 m below 22 m thick SLO. Ferruginous shale occurring as partings within the ore zone shows gradual decrease of iron content towards bottom. Iron ore in the Netrabandha Pahar west block occurs isolated bodies associated with buff colored variegated shale and ferruginous shale.

3.2.1. Reserve / Resource

Table 3.5 Threshold value & Cut off Parameters

1	Threshold	45% Fe
2	Cut-off grade	55%Fe

Fig3.1: Bore location in lease area of Netrabandha Pahar Fe ore mine

S.n	Salient features	Description
1)	Method of Mining	Fully Mechanized (FM)
2)	Proposed production	1.0 Million Tones during 5 th year
3)	Type of ore	Lateritic Iron ore, Hard Laminated ore, Soft Laminated
		ore, Blue dust
4)	Proposed Means of raising	Drilling, Blasting, excavation, screening, crushing,
		loading etc.
5)	Proposed Bench height and width	Height- 10m
		Width – 15m or More than the height
6)	Proposed Stripping ratio (t/m3) (Ore: O	1:0.28
7)	Over all slope	28° -37.5°
8)	Transportation ore to the stacking yard	Through dumper
9)	Nature of overburden/ interburden	Generally consists of BHJ, shale, and Laterites.
10	Proposed Drilling	110mm dia drill hole
11)	Proposed Blasting	Deep hole blasting using slurry/Emulsion, explosives
		&NONEL & Electric Detonator.

Table: 3.6 Mining Factors or Assumptions

Table 3.7: Mineral Reserve

			Quantity		Grad	e
	Code					Non-
Classification						Fores
		Forest	Non-Forest	Total	Forest	t
A. Mineral Reserve						+45
		14563715.751	2710356.48	17274072.23	+45%Fe	%Fe
1. Proved Mineral Reserve	111	Nil	Nil	Nil	Nil	Nil
(A)	111	Nil	Nil	Nil	Nil	Nil
2. Probable Mineral Reserve			Nil	Nil	Nil	Nil
(A)	121	Nil				
3. Probable Mineral Reserve			2641128.8	15291289.03		+55
(A)		12650160.234	0	4	+55%Fe	%Fe
				1982783.19		15-
	122	1913555.516	69227.68	6	45-55%Fe	55%Fe
						+45
B. Remaining Resources		324525.6	429295.4	753821	+45%Fe	%Fe
1. Feasibility Mineral	211	Nil	Nil	Nil	Nil	Nil
Resource (B)	211	Nil	Nil	Nil	Nil	Nil
2. Prefeasibility Mineral			Nil	Nil	Nil	Nil
Resource (B)	221	Nil				
3. Prefeasibility Mineral			298443.08	581752.2		+55
Resource (B)		283309.12			+55%Fe	%Fe
			130852.32	172068.8		45-
	222	41216.48			45-55%Fe	55%Fe
4. Measured Mineral			Nil	Nil	Nil	Nil
Resource (B)	331	Nil				
5. Indicated Mineral	332	Nil	Nil	Nil	Nil	Nil

Resource (B)						
6. Inferred Mineral Resource			Nil	Nil	Nil	Nil
(B)	333	Nil				
7. Reconnaissance Mineral			Nil	Nil	Nil	Nil
Resource (B)	334	Nil				
Total Mineral Resources						+45
(A+B)		14888241.4	3139652	18027893.0	+45%Fe	%Fe

Table 3.8 Mineral Beneficiation / Processing

Sl. No.	Radicals	Wt %
1	Fe	56.32%
2	Silica	4.3%
3	Alumina	8.4%

3.3. Mining Operations

During the plan period, it has been proposed to produce 1.0 MTPA iron ore eper annum. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc.

Strategy for Development:

The quarry-1 has been proposed in the non-forest land and quarry-2 in forest land. It is pertinent to be mentioned here that, even after obtaining the final forest clearance, tree felling and working permission will take more time and during that period we will commence and operate in the quarry-1 which is situated in the non-forest land.

Haul Road:

The layout of roads for haulage of ore/ waste and access to different installation in the mine will be developed complying with the statutory regulations stipulated in the metalliferrous Mines Regulations, 1961. Overburden and Mineral reject will be transported to the respective site of dumping and stacking located in the lease area. Fifteen meter wide haul road will be developed in the lease area as per need at a gradient up to 1:16.

Site Services:

As far as day to day mine operation is concerned, the infrastructure such as site office, weigh bridge, rest shed, First-aid centre, blasting shed security house, magazine, guard house etcwill be established before mining operation in the lease area.

Machineries to be deployed.

The mine will be operated in a three shift basis. Process of excavation and loading of overburden/waste will be done by deploying hydraulic excavators and dumpers. Excavators of $0.9 - 2.5m^3$ capacities will be deployed for excavation & loading of ROM ore and dumpers of 25t capacity shall be deployed for transportation of ore and OB. Hard iron ore will be loosened through drilling & blasting. For the purpose, DTH drill of 115mm dia, compressor of 450cfm etc will be used during ensuing scheme period to achieve the targeted production. For maintenance of OB dumps dozers will be deployed. Loading & un-loading of sorted & sized ore is loaded by mechanized method.

Transportation

Ore will be transported from quarry site to screen and crushing site for processing by use of 25 ton dumpers and waste materials will be dispatched from quarry to dumping site by using same capacity dumpers. From the stock yard saleable material will be dispatch by using dumper of different capacities.

	PRODUCTION			
	MAIN	MINERAL REJECT	ROM	WASTE
YEAR	(in Tonne)	(in Tonne)	(in Tonne)	(in Tonne)
1ST	399990	0	399990	131036.6
2ND	450000	0	450000	83964.28
3RD	600000	0	600000	132815
4TH	800000	0	800000	503297.5
5TH	1000000	0	1000000	198255.5
Grand Total	3249990	0	3249990	1049369

Table 3.9: Tentative Production Summary year wise

Fig 3.2: Year wise Development section

3.10 Table: Total ROM and waste generation

SI. No.	Year	Total Handling (t)	Waste Quantity (t)	ROM Quantity (t)	ROM Quantity Saleable Mineral (t)	ROM Quantity Mineral Reject (t)	Ore to OB Ratio (RoM Quantity / Waste Quantity)	Grade Range (%
1	1 st	504007	131036.			0	1.0.227	45% Fe to +65 %
		531027	6	399990	399990	0	1:0.327	Fe
2	2 nd		83964.2					45% Fe to +65 %
2		533964	8	450000	450000	0	1:0.186	Fe
3	3 rd	722915	122015	600000	600000	0	1.0 221	45% Fe to +65 %
	.th	732015	132013	000000	000000	0	1.0.221	ге
4	4"		503297.					45% Fe to +65 %
4		1303298	5	800000	800000	0	1:0.629	Fe
5	5 th		198255.					45% Fe to +65 %
		1198256	5	1000000	1000000	0	1:0.198	Fe
Т	otal	4299360	1049369	3249990	3249990	0		

Fig 3.3: Five years development Plan

4. Proposed utilization of water for Mine operation

As per the approved mine plan the Netrabandha Pahar (West) block mine proposed 124.08 KLD of water. The required quantity will be drawn from ground water sources, RWH and recycled water. The entire water is utilize as per the Table 4.1

Table 4.1: Annual requirement of water from all sources & Reduction of GW consumption										
Compone nts	From Groun d Water in KLD	Recycle water Generatio n from ETP	Fro m RW H in KLD	From STP in KLD	Total Usage in KLD	Days	Annual Water Consump tion from all sources in cum	Annual GW Consumptio n in cum	Reduction of GW consumpti on in cum	Reductio n of GW consum ption in KLD
Dust										
Supressio	40	0	20	4.04	74.04	240	17760.6	0600	9160 G	24.04
n	40	0	50	4.04	74.04	240	17709.0	9000	0109.0	54.04
Green Belt	5	0	8	4	17	240	4080	1200	2880	12
Industrial	5	5.04	0	4	14.04	300	4212	1500	2712	9.04
Domestic	12	7	0	0	19	300	5700	3600	2100	0
Total	62	12.04	38	12.04	124.08	-	0	15900	15861.6	55.08

4.1 For Drinking & Domestic – Drinking water of 12 KLD is proposed to be obtained from ground water and domestic requirement of 5KLD from STP & ETP.

4.2 Plantation – 17 KLD of water recycled from ETP is proposed to be used for maintaining green belt.

4.5Dust suppression - as shown in table4.1, 74.04 KLD is required for dust suppression is obtaining partly from surface water, groundwater and recycled water.

4.4 Industrial: For running the mining industry 14.04 KLD water is required, which obtaining from surface water, groundwater and recycled water.

4.3 Recharge- Roof Top rain water harvesting is proposed

4.4 Runoff to stream- No discharge is released to any stream from the Netrabandha Pahar (West) block mine

4.5 Benefitted area- Nearby villagers

Comprehensive assessment of the impact on the ground

water regime

Comprehensive assessment of the impact on the ground water regime in and around the project area highlighting the risks and proposed management strategies proposed to overcome any significant environmental issues.

M/s Raga Tradeconpvt Ltd for grant of Mining Lease for Netrabandha Pahar (West) Block for iron ore over an area of 74.3700Ha near Baliadihi village, Koira Tehsil of Sundargarh district of Odisha for a period of 50 years. The company has planned to establish one beneficiation and pellet plant in Keonjhar/Sundargarh district of Odisha within a period of two year. Iron ore produced from the block will mostly be utilized in the pellet plant. Total estimated mineable reserve within the area is 17274072tonnes for iron ore. Estimated total production of ore during five year would be 3249000tones. During the plan period, it has been proposed to produce 1.0 MTPA iron oreper annum. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. There is no agriculture land in the core zone. However in buffer zone agriculture land will be preserved from siltation by retaining wall, check dams, garland drain and settling ponds.. The nearest surface water source is TeheraiNala which is flowing 500m away from the western side of the mining lease. TeheraiNala is the major 2nd order drainage system of the area. As per the field observation there are some mine pit surrounding the lease area which work as recharge tank in rainy season. The lease area experience heavy rainfall during rainy season so that it will minimizes the groundwater usage. Presently, during rainy season, the water collected in the mine area is drained to the sump floor of each quarry. The sump acts as a good rainwater recharge structure and the collected rainwater normally seeps into the ground.

Fig 5.1: Pond and Hand pump in core zone of lease area

5.1. Impact on surface water sources:

Netrabandha Pahar (West) block Iron ore mine is situated in the higher elevation as depicted in the fig 6.2: No Nala/stream exist or generates from ML area of Netrabandha mine. The ML area is not situated within any wetland zone and not part of any national park etc. Other existing small ponds/ water bodies within core and buffer zone has been investigated and the water quality is found normal.

5.1.1: Diversion

Existing channels [constructed dam/barrages/weir/canals/hydro-electric projects] No existing channel, constructed dam/barrages/weir/canals/hydro-electric projects etc need to be diverted due to the project. Thus 6.1.1 is not applicable.

5.1.2: Change

in land use [change in flood plain, lotic & lentic systems etc.]-No nala/stream/ river exist or generates from ML area of Netrapahar Fe ore mine. The ML area is not situated within any wetland zone thus change in land use in flood plain, lotic & lentic systems etc is not applicable.

5.2. Impact on groundwater sources-

The Netrabandha mine lease area is in Koira block of Sundergarh district, Odisha which is categorized under safe category (Stage of GW Extraction 33%) by the latest estimation carried out by CGWB (2020). The groundwater levels measured in core and buffer zone varies from (3.7-36.3m). The area is part of hard rock terrain with poor permeability rock and there is no aquifer system due to high elevation (717 m). Based on the field observation it has been found that there is no weathered portion in around the lease area. At present there is no existing water body, the mining activity will be carried out in such a manner which won't create any threat of groundwater resources. The mine area experienced heavy rainfall hence by constriction of check dam, rooftop rain water harvesting structure, retaining wall and settling pond can enhance the water availability.

Fig 5.2: Google elevation profile of study area around Netrabandha Pahar Fe ore Mine from three directions

5.3. Socio-Economic Aspects:

5.3.1. Settlements and population dynamics around project area

The study area comes under rural. There exists about 31 villages in the study area and their details are given in Table 5.1 and 5.2

There is no impact on groundwater condition because of mining activity in Netrabandha Pahar (West) Block.

Table 5.1 Crop production details of Sundergarh District

Odisha in Kharif and Rabi Season									
	Khar	if	Rabi						
SI	Crops	Area (ha)	Crops	Area (ha)					
no.									
1	Paddy	13250	Wheat	111					
2	Maze	463	Cowpa	190					
3	Ragi dry	205	Horsegram	774					
4	Jower	124	Gram	298					
5	Biri	1403	Mustard	395					
6	Соwра	146	Potato	109					
7	Groundnut	296	Onion	195					
8	Til	1286	Garlic	80					
9	Zinger	156	Fieldpea	140					
10	Other vegetables	1088	Other vegetables	1786					

5.3.2. Dependency on sources of water [surface or sub-surface] the area by and large depends on rain-fed agriculture with supportive irrigation. It is seen that shifting of occupation among the local population is mostly towards mining and its related work. Mining leads to livelihood gain through creation of employment opportunities in the region. Loss of cultivable land and forest land due to mining activities which invites change in their native profession and may envisage involuntary migration of population to other region for livelihood. This working mining project has immensely benefitted this region in the field of potential employment, improved per capita income, improved social welfare, education, medical healthcare systems, communication, infrastructural build-up, etc. In the core zone no habitation exists. Hence, economic profile of population within core zone is not envisaged. In buffer zone, this project will help in direct employment opportunities for 259 persons and indirect employment for more than 250 persons through various service related activities connected with the project operations

district, Odisha									
Sl.no	Location	House	Male	Female	Total Population	Area (ha)			
1	Baldihi	80	170	157	327	508			
2	Ranisal	74	151	136	287	126			
3	Padadhi	88	152	175	327	192			
4	Patmunda	242	501	512	1013	384			
5	Khajuridihi	85	179	186	365	797			
6	Teheri	174	339	415	754	544			
7	Sargigarh	176	355	383	738	363			
8	Sanindipur	204	414	372	786	461			
9	Kalmanga	323	634	656	1290	753			
10	Ganua	376	820	797	1617	754			
11	Rangalbeda	162	334	294	628	388			
12	Kasira	270	581	699	1280	777			
13	Badpatuli	108	217	239	456	346			
14	Kadamdihi	105	249	265	514	697			
15	Kirrakudar	81	186	168	354	203			
16	Gaudiniposh	155	420	414	834	274			
17	Badindipur	123	284	264	548	396			
18	Dengula	173	438	498	936	3496			
19	Saleipali	147	341	396	737	215			
20	Basada	36	73	80	153	313			
21	Dalita	18	33	36	69	424			
22	Tegerei	174	339	415	754	544			
23	Kula	149	379	374	753	332			
24	Malda	147	297	267	564	577			
25	Nuagaon	90	223	217	440	432			
26	Patbeda	34	79	66	145	308			
27	Railela	302	645	697	1342	683			
28	Rengua	54	150	167	317	265			
29	Sanputli	207	449	445	894	423			
30	Taldihi	75	158	163	321	1104			
31	Bandal	92	219	249	468	437			

Table 5.2: Population data of study area in part of Koida tehsil, Sundergarh district, Odisha

6. Proposed measures for disposal of wastewater by mine drawing saline water

The water in the surrounding of lease area is fresh and the TDS is ranges between 10 and 310 ppm in general so disposal of saline water not applicable.

7. Water Conservation

Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted. - Brief writes up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project. - Details of water conservation measures to be adopted to reduce/ save the ground water. - Total water balance chart showing the usage of water for various processes in Table no 4.1

At present the lease area is required 124.04 KLD of water for mining operations. The entire water requirements are fulfilled by RWH, recycle water from STP & ETP and ground water. The water is to be consumed by various mine operation such as dust suppression, domestic use, plantation, and workshop (Table 4.1). The area experiences high rainfall, the site will generate above volume of run offs during such rainy periods. The surface run off from the uncovered site would contain high concentration of suspended matter and eroded matter which will be checked through two ponds, Roof top RWH and settling ponds.

Water conservations can be enhanced by including efficient measures of water use for mining and domestic consumption, effective reuse and recycles of water and treated water, adoption of appropriate rainwater harvesting and artificial recharge methods. It is therefore following sub topics are incorporated in this chapter.

7.1 Water use and water balance

7.2 RWH and Artificial Recharge

7.1 Water use and water balance:

Netrabandha Pahar (West) block iron ore mine is proposed of 124.04 KLD water. Water is to be used for dust suppression, domestic use, plantation, and workshop purposes shown in the(Table 4.1).

7.2. Rainwater Harvesting & Artificial recharge:

The total lease area of Netrabandha Pahar (West) Iron ore mine is 743700 m²and its land use is discussed in chapter 1.4 and table 1.1. The area experiences high rainfall so that the mine has concentrated effort to conserve each drop of rainwater. The project area is having undulating hilly terrain and poor permeability. The depth of water level below ground level varies depending on the local topography, geology & hydrological conditions. The nearest surface water source is TeheraiNala which is flowing 500m away from the western side of Hydrogeological Investigation and Impact Assessment Report for Netrabandha Pahar (West) Block for

Iron Ore, Sundergarh District, Odisha

the mining lease. TeheraiNala is the major 2nd order drainage system of the area. Mine pit structure also present all around the lease area where water gets collected from the uplands through drains.Garland drains & retaining walls will be constructed all around the dumps and plantation of native species will be carried out on the dump slopes to minimize erosion. A settling pond will be constructed to arrest silt and sediment flows from mining area during rain fall and the water so collected is being utilized for the mine area, roads, green belt development etc.

Table 7.1 Crop production details of Sundergarh District										
Odisha in Kharif and Rabi Season										
	Khar	if	Rabi							
SI	Crops	Area (ha)	Crops Area							
no.										
1	Paddy	13250	Wheat	111						
2	Maze	463	Соwра	190						
3	Ragi dry	205	Horsegram	774						
4	Jower	124	Gram	298						
5	Biri	1403	Mustard	395						
6	Соwра	146	Potato	109						
7	Groundnut	296	Onion	195						
8	Til	1286	Garlic	80						
9	Zinger	156	Fieldpea	140						
10	Other vegetables	1088	Other vegetables	1786						

Fig 7.1: Existing rainwater harvesting pond and mine pit storage tank in study area

Table 7.2: Pond and Water bodies in study area									
SI No	Location	Latitude	Longitude	Elevatio n (m)	EC (mS)	рН	TDS(ppt)	DO (mg/l)	water body
		21.88416	85.30532						
1	Ranisal	2	5	596.84	650	7.1	320	4.7	Pond
			85.30841						
2	Paatmunda	21.87555	9	617.73	320	6.9	150	1.3	Pond
		21.86364	85.29334						
3	Khajuridihi	4	6	664.9	300	7.2	139	4.52	Pond
		21.96384							
4	KJSA Steel Plant	4	85.317	577	650	7.5	360	3.28	Mine pit
		21.86888	85.18799						
5	Near Tensa Road	9	1	619.85	20	5.9	10	1.38	Open well
6	National Enterprise	21.84094	85.34045	867.2	190	7.2	80	3.1	Pond
		21.87618	85.19657						
7	Raikela Iron Mine	8	9	572.02	680	7.1	350	4.73	Pond
		21.87849	85.19765						
8	Raikela Iron mine	5	1	571.44	20	6.3	10	4.24	Open well
		21.91808	85.20971						
9	Comanado Steel Plant	5	4	573.27	450	6.8	240	5.94	Pond

7.3. Monitoring, Measurement and Capacity building

Monitoring and measurements of several parameters are part of water conservation strategy towards the motive of efficient management of water. The withdrawal of groundwater is regularly monitored and measured from the existing dug well. The water level is found at 3.7 to 36.3 m bgl in pre monsoonal period, which varies from 2.5-5 m bgl in the monsoonal period. The Netrabandha Pahar mine conducts regular capacity building of its maintenance staff that monitors and measures and keeping record of various data related to water use and water conservation. The workers have been trained for keeping record and onward submission of data as per the requirement. For monitoring of groundwater level in the area of Netrabandha Pahar mine, as per the guideline of CGWA, a piezometer has to be constructed at the area. The installation of piezometer is proposed exclusively for monitoring of groundwater level deploying automatic water level recorder with telemetric arrangement of data transmission.

Proposed Roof top rainwater harvesting structure

A roof top rainwater harvesting is proposed using standard deign as given below for mine lease area and associated building at the mine core zone by drilling of 30m deep 6" dia bore well (Fig 7.2)

Fig 7.2 Design of proposed rooftop rain water harvesting structure

8. Any other details pertaining to the project: NA

5. Study for Rainwater harvesting around Iron ore mine of Dholta Pahar, Sundergarh, Odissa-

Click to view

MANAV RACHNA INTERNATIONAL INSTITUTE OF RESEACH AND STUDIES, FARIDABAD
Comprehensive Report on:

Proposed RWH Structure in core zone of Dholta Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/S KASHVI POWER AND STEEL PVT LTD PLOT NO 1234/P, GOVINDA PRASAD, BOMIKHAL, BHUBANESWAR- 751006 E-MAIL ID: groupkashvi@gmail.com

Comprehensive Report on: **Proposed RWH Structure in Core Zone of Dholta Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.**

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/S KASHVI POWER AND STEEL PVT LTD PLOT NO 1234/P, GOVINDA PRASAD, BOMIKHAL, BHUBANESWAR- 751006 E-MAIL ID: groupkashvi@gmail.com By MRCAWTM – May 2022

Executive summary

M/s Kashvi Power & Steel pvt Ltd is located in Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Dengula village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Kashvi Power & Steel Private Limited operates as a manufacturer of sponge iron, billet and ingots and exporter of minerals. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. During the plan period, it has been proposed to produce 2.0 MTPA iron ore per annum. The present study is made for obtaining NOC from CGWA for extraction of maximum 97KLD of groundwater during mining operation as per the approved mine plan. The present report is based on the Hydrogeological investigation made within core zone and its 10km radius buffer zone for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining renewal of NOC. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic. The study area is located in Dengula Village, Koira Tehsil of Sundargarh District, Odisha whichfalls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation name Singbhum-Keonjhar-Bonai group of iron ore of Precambrian age. These constitute hard rock's includes schist, tuffs, phyllite, basic rock, BHQ/BHJ have been classified as Iron Ore Series (IOS). Aquifers are developed only in the low lying area and valley parts of the study area. The total lease area of the proposed Dholtapahar Fe ore block is 60.508 ha (605080 m²). Groundwater guality is fresh and potable in both core and buffer zone area and EC remains below 1900 ppm and TDS varies from 10 to 310 ppm in the study area. As per the approved mine plan the dewatering of groundwater maximum 97KLD as the mine is generating no water discharge and only 97 KLD will be extracted from ground water for mine use. Rainwater is harvested within the ML area through construction of water conservation pond and earth bunds. The annual conservation through RWH is about 26825m³/anm. There is no impact on groundwater because of open cast mining. For the running of mine 155KLD water is required, 97KLD from ground water and 58KLD of water from RWH and recycle water from STP & ETP. Thus, the study recommends NOC may be provided for next 5 yr with maximum 97 KLD extractions from groundwater.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/S. Kashvi Power and Steel Pvt. Lmt, Odisha is thankfully acknowledged.

Discussions with Mr. Pradeept Mohapatra, Director WCS, regarding the geology of lease area and plan our investigations according to scope of work is gratefully acknowledged. Help rendered by Mr. Shubham, Geologist, M/S. Kashvi Power and Steel Pvt. Lmt, Odisha in every stage of planning and Field verification, investigations in and around lease area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records many of them are reproduced in this report and forms part of annexure section.

At lease area, during days of field investigation we have received warm welcome and all hospitality and requisite support from mine team. We thankfully acknowledge Mr. Pradeept Mohapatra, Director WCS and his team for their cooperation.

The report has been prepared by Ms Sheha Rai, Asstt Prof MRCAWTM and Sandeep Kumar Research Assistant, MRCAWTM under the supervision of Prof (Dr) Arunangshu Mukherjee, Director MRCAWTM. Ms Alifia Ibkar, RA MRCAWTM helped Mr Sandeep Kumar in the field work and data collection.

It is to certify that MRCAWTM have investigated the area of Dholtapahar Fe ore block of Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Based on actual data collected from field and literature survey done, has prepared the report as per the format of CGWA.

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies (Deemed to be University under section 3 of the UGC Act, 1956) Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121004

CONTENTS

Executive summary

Acknowledgement Format of Report

Forma	t of Report	
Sr. NO.	DESCRIPTION	PAGE NO.
1.	Introduction	1 - 3
	1.1 Project Description	1
	1.2 Location	1
	1.3 Topography and Drainage	2
	1.4 Groundwater Situations	2
	1.5 Climate and rainfall pattern	3
	1.6 Groundwater regime monitoring	3
2.	Water Conservation	4 - 11
	2.1 Water use and water balance	4
	2.2 Rainwater Harvesting	5
	2.3 Monitoring, Measurement and Capacity building	12

LIST OF TABLES

SR. NO.	DESCRIPTION	PAGE NO.
1.1	Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020	03
2.1	Proposal of Water Utilization in Dholta pahar mine (Area= 60.508ha)	05
2.2	Proposed Rainwater Harvesting Structures within ML area of Dholta pahar Iron Ore Mine	08

LIST OF FIGURES

Sr.	DESCRIPTION	PAGE
no.		NO.
1.1	Google Image showing Dholtapahar Fe ore location	1
2.1	Proposed Earth bund structure N-W direction in lease area	6
2.2	Proposed Earth bund structure in S-W direction in lease area	7
2.3	Proposed Earth bund structure in N-E direction in lease area	7
2.4	Proposed Earth bund structure in N direction in lease area	8
2.5	Proposed earth bund structure in lease area	9
2.6	Proposed pond structure in the lease area	9
2.7	Approved mine plan of lease area	10
2.8	Existing rainwater harvesting pond and mine pit storage tank in Buffer Zone.	11

1.0. Introduction

1.1. Project description

M/S. Kashvi Power and Steel Pvt. Lmt, Bhubaneswar is a registered firm under Minerals (Development and Regulation) ACT, 1957 and The Mineral (Auction) Rules, 2015, Govt of Odisha. Dholtapahar Fe Ore Block located in Koira Tehsil of Sundargarh district of Odisha. The IBM company number is IBM/7815/2011. The total lease area of Dholtapahar Fe ore block is 60.508 ha. As part of the statutory clearance, the Mining Plan and Progressive Mine Closure Plan is prepared under Rule 16(1) of MCR, 2016 and Rule 23 of MCDR, 2017 respectively for a period of 5 years from the date of opening of the mine for grant of Mining Lease in favor of M/S. Kashvi Power and Steel Pvt. Lmt. The registered office is situated at State of Maharashtra (Mumbai) having is registered office at 503, 5th floor, Greenland Apartment, Building no.3, JB Nagar, Andheri East, Mumbai- 400059, Maharashtra to carry on all or any of the business as manufacturers, buyers, sellers, suppliers, traders, exporters, minerals, metals etc. M/s Kashvi Power & Steel Pvt Ltd is a part of Kashvi group and one of the growing companies in Odisha. Kashvi Power & Steel Private Limited operates as a manufacturer of sponge iron, billet and ingots and exporter of minerals. Iron ore produced from the Dholta Pahar block will mostly be utilized in their sponge iron plant. However, as per the market demand, part of the iron ore may be sold to the consumers. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. During the plan period, it has been proposed to produce 2.0 MTPA iron ore per annum.

1.2. Location

M/s Kashvi Power & Steel pvt Ltd is located in Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Dengula village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Taldihi village is 1.5 km away from the study area. Nearest railway station is Barsuan which is 23 km away from the lease area. The lease area of mine is not located within 10km radius of National Park /Wild Life Sanctuary / Protected area and don't falls under Coastal Regulation Zone (CRZ). Many shallow depth open cast pits mine are present in the study area.

Fig 1.1: Google Image showing Dholta pahar mine Pillars location

1.3. Topography and Drainage

Dholtapahar block is a part of Koira group of upper Shale formation. Study area having steep rising hills with intervening steep gorge and narrow valley. The geomorphic subunits like the pediments, pediplains, buried pediments, valley fills, and lineaments are the predominant in the hard rock areas in study area. The highest elevation is 825m MSL and lowest elevation is 550m MSL

Study area is covered with different hills with intervening intermontane valleys, isolated hillocks and flat to gently undulating plains. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic.

1.4. Groundwater Situations

Sundergarh district is North Western part of Odisha state. Sundergarh is recognized as an industrial district in the map of Odisha. Steel Plant, Fertilizer plant and Cement factory.

Ferro Vanadium Plant. Machine building factory, Glass and China clay factory and Spinning mills are some of the major industry of this district. Large part of the study area belongs to Dengula Village, Koira Tehsil of Sundargarh District, Odisha. Ground water is the main source of drinking as well as industrial and domestic purpose. However, the requirement of water in irrigation and agriculture is fulfilled mainly by river, canals, as well as by rainwater. The rainwater also is the main source for recharge of groundwater of the area.

1.5. Climate and Rainfall pattern

The climate of the district is sub tropical climate characterized with hot and dry summer, cold winter and erratic in rainfall. The winter season extends from November to end of February, which is followed by summer season from March to the middle of June, and rainy season from middle of June to middle of October. During summer months the maximum temperature rises up to 43° C and May is the hottest month. December is the coldest month of the year when the average daily temperature drops down to 8° C. Relative humidity is around 60-70% throughout the year. The highest and lowest monthly mean relative humidity so far recorded is 97% (Dec) and 26% (April). The annual rainfall of last decade is given in Table (1.1).

Table 1.1 Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020							
Year	Actual	Deviation (0()	Year	Actual Rainfall	Deviation (0/)	Average	
	Rainiali (mm)	Deviation (%)		(mm)	Deviation (%)	Raimaii (mm)	
2011	1788.35	20.87	2016	1098.51	-28.82		
2012	1435.18	1.39	2017	1323.91	-6.8		
2013	1537.77	7.97	2018	1396.59	-1.32	1415.126	
2014	1335.09	-5.99	2019	1387.02	-2.02		
2015	1286.6	-9.9	2020	1562.24	9.4		

1.6. Ground water regime monitoring:

The lease area of 60.508 ha is completely hard rock zone and located at higher elevation, no evidence of groundwater has been reported during the exploratory drilling. Hence, in process of mining there is no possibility of cutting groundwater or any ground water discharge will find during the mining activity.

The study area comprises 10km radius zone in Dholta Pahar iron ore Block located in Koira Tehsil of Sundargarh district of Odisha. Detailed hydrogeological study of both core and buffer zone of mine area is carried out. The hydrogeological condition varied from place to place due to different litho unit of aquifer. The hydrogeological units of the study area are broadly categorized into two groups namely.

- 1) Consolidated formations.
- 2) Unconsolidated formations

1). Consolidated formations

The study area is occupied by the consolidated formations comprising of Precambrian metasediments of Gangpur series and Iron ore series and also granite gneiss, metasediments like amphibolite, epidiorite etc. Ground water is stored mainly in the secondary porosity resulting from weathering and fracturing of the rocks. Ground water occurs under confined to semi-confined condition in the deeper fractured zones. Water yielding capacity is mainly depend on the extent of fracture, depth, opening and size of fracture. Mica schist, quartzite and phyllite are the formation in the study area.

2). Unconsolidated Formation

Laterite and alluvium are the main constituents of unconsolidated formation in the study area. The laterite is belonging to sub recent to recent age having high porosity. It is the good aquifer for dug well in study area. The alluvium soils are also the potential aquifers due to their high degree of porosity and permeability but are only limited in their occurrence.

2. Water Conservation

Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted. - Brief writes up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project. - Details of water conservation measures to be adopted to reduce/ save the ground water. - Total water balance chart showing the usage of water for various processes.

At present the lease area is required 155KLD water for mining operations. The 97KLD of water requirements are fulfilled by ground water, rest by RWH and recycle water. The water is to be consumed by various mine operation such as dust suppression, domestic use, plantation, and ETP & workshop (Table 2.1). The area experiences high rainfall, the site will generate above volume of run offs during such rainy periods. The surface run off from the uncovered site would contain high concentration of suspended matter and eroded matter which will be checked through retaining wall, check dams and settling ponds.

Water conservations can be enhanced by including efficient measures of water use for mining and domestic consumption, effective reuse and recycles of water and treated water, adoption of appropriate rainwater harvesting. It is therefore following sub topics are incorporated in this chapter.

2.1 Water use and water balance 2.2 RWH

2.1. Water use and water balance:

Dholta Pahar iron ore mine is proposed of 155KLD water. Water is to be used for dust suppression, domestic use, plantation, and ETP & workshop purposes shown in the (Table 2.1)

Table	Table 2.1: Proposal of Water Utilization in Dholta Pahar mine (Area= 60.508ha)							
SI. No	Purpose	Ground Water (KLD)	RWH & Outside	Recycled STP &ETP (KLD)	Total from all source			
1	Dust Suppression	59	30	9	98			
2	Domestic Use	12	-	-	12			
3	Plantation	8	8	5	21			
4	ETP & Workshop, Wheel Washing System	18	2	4	24			
	Total 97 40 18 155							

2.2.	Rainwater Harvesting	

Waste Water for recycling

The total lease area of Dholta Pahar Iron ore mine is 60508 m². The area experiences high rainfall so that the mine has concentrated effort to conserve each drop of rainwater. The project area is having undulating hilly terrain and poor permeability. The depth of water level below ground level varies depending on the local topography, geology & hydrological conditions. The nearest surface water source is Teherai Nala which is flowing 500m away from the western side of the mining lease. Mine pit structure also present all around the lease area where water gets collected from the uplands through drains. Garland drains & retaining walls will be constructed all around the dumps and plantation of native species will be carried out on the dump slopes to minimize erosion. A settling pond will be constructed to arrest silt and sediment flows from mining area during rain fall and the water so collected is being utilized for the mine area, roads, green belt development etc.

:

Following two type of rainwater harvesting structure is proposed in lease area

- 1. Earth bunds
- 2. Ponds

1. Erath bunds

Earthen bunds are essentially an external catchment, long slope technique of water harvesting. Typically a U-shaped structure of earthen bunds which farmers build on their cultivated lands to harvest runoff from adjacent upslope catchments, this technique usually collects rainwater and, sometimes, floodwaters.

2. Pond

A pond is a body of freshwater smaller than a lake. Ponds are naturally formed by a depression in the ground filling and retaining water. Streams or spring water is usually fed into these bodies. It is different from a river or a stream because it does not have moving water and it differs from a lake because it has a small area and is no more than around 1.8m deep. Some ponds are formed naturally, filled either by an underwater spring, or by rainwater.

Fig 2.1: Proposed Earth bund structure N-W direction in lease area

Fig 2.2: Proposed Earth bund structure in S-W direction in lease area

Fig 2.3: Proposed Earth bund structure in N-E direction in lease area

Fig 2.4: Proposed Earth pond structure in N direction in lease area

	Locations Index	Locations Index	Log	Tupo of	Proposed Dimensions			
Sno				Structure	Bund Length	Bund Max	Capacity in	
				Structure	in m	hight in m	m3	
1	C-1A	21.841544	85.179932	Earthen Bund	60	3	1125	
3	C-1B	21.840184	85.179465	Earthen Bund	100	4	4000	
4	C-1C	21.839546	85.17899	Earthen Bund	150	6	5400	
5	C-2	21.837018	85.179022	Earthen Bund	110	8	8000	
6	C-3	21.840721	85.187198	Earthen Bund	75	6	4800	
7	P-1	21.842596	85.185239	Pond	50*35	2	3500	
						TOTAL	26825	

Table 2.2- Proposed Rainwater Harvesting Structures within ML area of Dholtapahar Iron Ore Mine

Fig 2.5: Proposed earth bund structure in lease area

Fig 2.6 Proposed pond structure in the lease area

Fig 2.7: Approved mine plan of lease area

Fig 2.8: Existing rainwater harvesting pond and mine pit storage tank in Buffer Zone.

4.1. Monitoring, Measurement and Capacity building

Monitoring and measurements of several parameters are part of water conservation strategy towards the motive of efficient management of water. The withdrawal of groundwater is regularly monitored and measured from the existing dug well. The water level is found at 3.7 to 36.3 m bgl in pre monsoonal period, which varies from 2.5-5 m bgl in the monsoonal period. The Dholta pahar mine conducts regular capacity building of its maintenance staff that monitors and measures and keeping record of various data related to water use and water conservation. The workers have been trained for keeping record and onward submission of data as per the requirement. For monitoring of groundwater level in the area of Dholta Pahar mine, as per the guideline of CGWA, a piezometer has to be constructed at the area. The installation of piezometer is proposed exclusively for monitoring of groundwater level deploying automatic water level recorder with telemetric arrangement of data transmission.

Comprehensive Report on:

Proposed RWH Structure in core zone of Netrabandha Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/S KASHVI POWER AND STEEL PVT LTD PLOT NO 1234/P, GOVINDA PRASAD, BOMIKHAL, BHUBANESWAR- 751006 E-MAIL ID: groupkashvi@gmail.com

6. Study for Rainwater harvesting around Iron ore mine of Netrabandh Pahar, Sundergarh, Odissa-

Click to view

MANAV RACHNA INTERNATIONAL INSTITUTE OF RESEACH AND STUDIES, FARIDABAD

Comprehensive Report on: **Proposed RWH Structure in Core Zone of Netrabandha Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.**

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/S KASHVI POWER AND STEEL PVT LTD PLOT NO 1234/P, GOVINDA PRASAD, BOMIKHAL, BHUBANESWAR- 751006 E-MAIL ID: groupkashvi@gmail.com By MRCAWTM – May 2022

Executive summary

M/S. Raga, Tradecon Pvt Lmt Bhubaneswaris located in Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Bhaliadihi village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Sanputli village is 1 km away from the study area. M/S. Raga, Tradecon Pvt Lmt operates as a manufacturer of sponge iron, billet and ingots and exporter of minerals. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc. During the plan period, it has been proposed to produce 1.0 MTPA iron ore per annum. The present study is made for obtaining NOC from CGWA for extraction of maximum 124.08 KLD ground water required during mining operation as per the approved mine plan. The present report is based on the Hydrogeological investigation made within core zone and its 10km radius of buffer zone for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining of NOC. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic. The study area is located in Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha which falls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation name Singbhum-Keonjhar-Bonai group of iron ore of Precambrian age. These constitute hard rock's includes schist, tuffs, phyllite, basic rock, BHQ/BHJ have been classified as Iron Ore Series (IOS). Aquifers are developed only in the low lying area and valley parts of the study area. The total lease area of the proposed Netrabandha Pahar Fe ore block is 74.3700Ha (743700 m²). Groundwater quality is fresh and potable in both core and buffer zone area and EC remains below 1900 ppm and TDS varies from 10 to 310 ppm in the study area. As per the approved mine plan the mining activities restricted above the water table hence no water discharge has been generated during mining activities. The total water requirement is 124.08 KLD out of this 62 KLD will be extracted from ground water for mine use. Rainwater is harvested within the ML area through construction of water conservation pond and Roof Top RWH. The annual conservation through RWH is about 18576 m³/yr. There is no long term impact on groundwater because of open cast mining. Rest 62.08 KLD water will be arrange from RWH & recycle of waste water through ETP & STP. Thus, the study recommends NOC may be provided for next 5 yr with maximum 62 KLD extractions from groundwater.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/S. Raga, Trade con Pvt. Lmt. Odisha is thankfully acknowledged.

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/S. Raga, Trade con Pvt. Lmt. Odisha is thankfully acknowledged.

Discussions with Mr. Pradeept Mohapatra, Director WCS, regarding the geology of lease area and plan our investigations according to scope of work is gratefully acknowledged. Help rendered by Shri Shubham, Geologist, Shri. Prabhat, M/S. Raga, Tradecon Pvt Lmt, Odisha in every stage of planning and Field verification, investigations in and around lease area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records many of them are reproduced in this report and forms part of annexure section.

At lease area, during days of field investigation we have received warm welcome and all hospitality and requisite support from mine team. We thankfully acknowledge Mr. Pradeept Mohapatra, Director WCS and his team for their cooperation.

The report has been prepared by Ms Sheha Rai, Asstt Prof MRCAWTM and Sandeep Kumar Research Assistant, MRCAWTM under the supervision of Prof (Dr) Arunangshu Mukherjee, Director MRCAWTM. Ms Alifia Ibkar, RA MRCAWTM helped Mr Sandeep Kumar in the field work and data collection.

It is to certify that MRCAWTM have investigated the area of Netrabandha Pahar Fe ore block of Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Based on actual data collected from field and literature survey done, has prepared the report as per the format of CGWA.

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies

(Deemed to be University under section 3 of the UGC Act, 1956) Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121004

CONTENTS

Executive summary

Acknowledgement

Format of Report	t
------------------	---

SI. n	D. DESCRIPTION	PAGE NO.
1.	Introduction	1 - 3
	1.1 Project Description	1
	1.2 Location	2
	1.3 Topography and Drainage	2
	1.4 Groundwater Situations	3
	1.5 Climate and rainfall pattern	3
	1.6 Groundwater regime monitoring	3
2.	Water Conservation	4 - 13
	2.1 Water use and water balance	5
	2.2 Rain Water Potential in lease area	6
	2.2 Rainwater Harvesting	6
	2.3 Monitoring, Measurement and Capacity building	13

LIST OF TABLES

SI.	DESCRIPTION	PAGE
no.		NO.
1.1	Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020	03
2.1	Annual requirement of water from all sources & Reduction of GW consumption	5
2.2	Standard & Adopted Values of Rainwater Co-efficient	6
2.3	Proposal of Water Utilization in Netrabandha Pahar (West) block mine (Area= 74.3700ha)	09

LIST OF FIGURES

SI. no.	DESCRIPTION	PAGE NO.
1.1	Google image showing proposed area of Netrabandha Pahar (West) block iron ore mine	1
2.1	Standard Design of rooftop rain water harvesting structure	7
2.2	Proposed location of Pond (P1) and roof top RWH structure in lease area	8
2.3	Proposed location of Pond (P2) in lease area	10
2.4	Proposed Pond Designs of P1 and P2 in the Lease Area	10
2.5	Proposed Pond Slope Design	10
2.6	Approved mine plan of lease area	11
2.7	Existing water harvesting structure in Buffer Zone	12

1.1. Project description

M/S. Raga, Tradecon Pvt Lmt. Bhubaneswar is a registered firm under Minerals (Development and Regulation) ACT, 1957 and The Mineral (Auction) Rules, 2015, Govt of Odisha. Netrabandha Pahar (West) iron ore Block located in Koira Tehsil of Sundargarh district of Odisha. The corporate identity Number of the company is U51420MH1995PTC162317. The total lease area of Netrabandha Pahar (West) Iron ore mine is 74.3700 ha. As part of the statutory clearance, the Mining Plan and Progressive Mine Closure Plan is prepared under Rule 16(1) of MCR, 2016 and Rule 23 of MCDR, 2017 respectively for a period of 5 years from the date of opening of the mine for grant of Mining Lease in favor of M/s Raga Tradecon Pvt Ltd. The registered office is situated at State of Maharashtra(Mumbai) having is regd. office at 503, 5th floor, Greenland Apartment, Building no.3, JB Nagar, Andheri East, Mumbai- 400059, Maharashtra to carry on all or any of the business as manufacturers, buyers, sellers, suppliers, traders, exporters, minerals, metals etc. The company has planned to establish pellet plant in Sundergarh/Keonjhar district of Odisha with a period of two years. Total ore reserve estimation in the lease area is 17274072 tonnes. Estimated total production of ore during five year would be Therefore, remaining reserves will be 17274072MT-3249000 tones. 3249000MT=14024082MT. The production of Iron Ore @ 1000000MT per annum, life of the mine will be 14024082MT/1000000MT=14.02 years. Therefore total life of the mine will be 19 years which includes 5 year of plan period and 14 years of conceptual period. During the plan period, it has been proposed to produce 1.0 MTPA iron ore per annum. The mine will be developed by opencast mining method with mechanized means deploying machinery like wagon drill machine, rock breaker, hydraulic / diesel operated shovel, dumper/tipper etc.

Location

M/S. Raga, Tradecon Pvt Lmt Bhubaneswaris located in Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Bhaliadihi village is located in north east part of Sundergarh district. The study area falls under survey of India toposheet no F45N1N and F45N5N. Sanputli village is 1 km away from the study area. Nearest railway station is Barsuan which is 23 km away from the lease area. The lease area of mine is not located within 10km radius of National Park /Wild Life Sanctuary / Protected area and don't falls under Coastal Regulation Zone (CRZ). Few shallow depth open cast pits mine are present in the study area.

Fig 1.1: Google image showing proposed area of Netrabandha Pahar (West) block iron ore mine

1.2. Topography and Drainage

Netrabandha Pahar (West) block is a part of Koira group of upper Shale formation. Study area having steep rising hills with intervening steep gorge and narrow valley. The geomorphic sub-units like the pediments, pediplains, buried pediments, valley fills, and lineaments are the predominant in the hard rock areas in study area. The highest elevation is 867.2m amsl and lowest elevation is 366.28m amsl.

Study area is covered with different hills with intervening intermontane valleys, isolated hillocks and flat to gently undulating plains. The area is drained by IB and Brahmani River and its tributaries. The easterly flowing Sankh and westerly flowing Koel River join at Vedavyas near Rourkela to form the Brahmani River. The river, IB a tributary of Mahanadi controls the drainage of the western parts of the district. The drainage pattern of the area is dendritic.

1.3. Groundwater Situations

Sundergarh district is North Western part of Odisha state. Sundergarh is recognized as an industrial district in the map of Odisha. Steel Plant, Fertilizer plant and Cement factory. Ferro Vanadium Plant. Machine building factory, Glass and China clay factory and Spinning mills are some of the major industry of this district. Large part of the study area belongs to Bhaliadihi Village, Koira Tehsil of Sundargarh District, Odisha. Ground water is the main source of drinking as well as industrial and domestic purpose. However, the requirement of water in irrigation and agriculture is fulfilled mainly by river, canals, as well as by rainwater. The rainwater also is the main source for recharge of groundwater of the area.

1.4. Climate and Rainfall pattern

The climate of the district is sub tropical climate characterized with hot and dry summer, cold winter and erratic in rainfall. The winter season extends from November to end of February, which is followed by summer season from March to the middle of June, and rainy season from middle of June to middle of October. During summer months the maximum temperature rises up to 43° C and May is the hottest month. December is the coldest month of the year when the average daily temperature drops down to 8° C. Relative humidity is around 60-70% throughout the year. The highest and lowest monthly mean relative humidity so far recorded is 97% (Dec) and 26% (April). The annual rainfall of last decade is given in Table (1.1).

Table 2	Table 1.1 Decadal Rainfall in Sundergarh District (Source: WRIS online portal) 2011-2020							
Year	Actual Rainfall (mm)	Deviation (%)	Year	Actual Rainfall (mm)	Deviation (%)	Average Rainfall (mm)		
2011	1788.35	20.87	2016	1098.51	-28.82			
2012	1435.18	1.39	2017	1323.91	-6.8			
2013	1537.77	7.97	2018	1396.59	-1.32	1415.126		
2014	1335.09	-5.99	2019	1387.02	-2.02			
2015	1286.6	-9.9	2020	1562.24	9.4			

1.5. Groundwater regime monitoring:

The study area comprises 10km radius zone in Netrabandha Pahar (West) iron ore Block located in Koira Tehsil of Sundargarh district of Odisha.Detailed hydrogeological study of both core and buffer zone of mine area is carried out.The hydrogeological condition varied from place to place due to different litho unit of aquifer.The hydrogeological units of the study area are broadly categorized into twogroups namely.

- 1. Consolidated formations.
- 2. Unconsolidated formations

1) Consolidated formations

The study areais occupied by the consolidated formations comprising of Precambrian metasediments of Gangpur series and Iron ore series and also granite gneiss, metasediments like amphibolite, epidiorite etc. Ground water is stored mainly in the secondary porosity resulting from weathering and fracturing of the rocks. Ground water occurs under confined to semi-confined condition in the deeper fractured zones. Water yielding capacity is mainly depend on the extent of fracture, depth, opening and size of fracture. Mica schist, quartzite and phyllite are the formation in the study area.

2) Unconsolidated Formation

Laterite and alluvium are the main constituents of unconsolidated formation in the study area. The laterite is belonging to sub recent to recent age having high porosity. It is the good aquifer for dug well in study area. The alluvium soils are also the potential aquifers due to their high degree of porosity and permeability but are only limited in their occurrence.

2. Water Conservation

Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted. - Brief writes up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project. - Details of water conservation measures to be adopted to reduce/ save the ground water. - Total water balance chart showing the usage of water for various processes.

At present the lease area is required 117.5 KLD for mining operations. The entire water requirements are fulfilled by ground water as well as surface/ recycle/ RWH water. The water is to be consumed by various mine operation such as dust suppression, domestic use, plantation, and ETP & workshop. The area experiences high rainfall, the site will generate above volume of run offs during such rainy periods. The surface run off from the uncovered site would contain high concentration of suspended matter and eroded matter which will be checked through retaining wall, earth bunds and settling ponds.

Water conservations can be enhanced by including efficient measures of water use for mining and domestic consumption, effective reuse and recycles of water and treated water, adoption of appropriate rainwater harvesting and artificial recharge methods. It is therefore following sub topics are incorporated in this chapter.

2.1 Water use and water balance

2.2. RWH and Artificial Recharge

2.1. Water use and water balance:

Netrabandha Pahar (West) block iron ore mine is proposed of 117.5KLD water. Water is to be used for dust suppression, domestic use, plantation, and ETP & workshop purposes shown in the (Table 2.1).

Table 2.1: Proposal of Water Utilization in Netrabandha Pahar (West) block mine (Area= 74.3700ha)										
SI. No	Purpose	Surface water /RWH (KLD)	Ground Water Ab(KLD)	Recycled STP &ETP (KLD)	Total water needed from all source(KLD)					
1	Dust Suppression	9.8	89.5	2.7	102					
2	Domestic Use	-	4.5		4.5					
3	Plantation	-	-	4.8	4.8					
4	ETP & Workshop, Wheel-Washing System	6.2			6.2					
	Total	16.0	94.0	7.5	117.5					

2.2. Rainwater Harvesting

The total lease area of Netrabandha Pahar (West) Iron ore mine is 743700 m². The area experiences high rainfall so that the mine has concentrated effort to conserve each drop of rainwater. The project area is having undulating hilly terrain and poor permeability. The depth of water level below ground level varies depending on the local topography, geology & hydrological conditions. The nearest surface water source is Teherai Nala which is flowing 500m away from the western side of the mining lease. Teherai Nala is the major 2nd order drainage system of the area. Mine pit structure also present all around the lease area where water gets collected from the uplands through drains. Garland drains & retaining walls will be constructed all around the dumps and plantation of native species will be carried out on the dump slopes to minimize erosion. A settling pond will be constructed to arrest silt and sediment flows from mining area during rain fall and the water so collected is being utilized for the mine area, roads, green belt development etc.

Following two type of rainwater harvesting structure is proposed in lease area

- 1. Roof top RWH
- 2. Ponds

1. Roof top rainwater harvesting structure

Rooftop Rain Water Harvesting is the technique through which rain water is captured from the roof catchments and stored in reservoirs. Harvested rain water can be stored in sub-surface ground water reservoir by adopting artificial recharge techniques to meet the household needs through storage in tanks. The Main Objective of rooftop rain water harvesting is to make water available for future use. Capturing and storing rain water for use is particularly important in dry land, hilly, urban and coastal areas.BH-13 will be used and completely developed as a roof top RWH structure to collect all roof water and directed transferred to underground. Total 1326m3 will be captured by roof top RWH structure. The propose location of RT RWH has been shown in Fig 2.2. Total capacity of the roof top RWH has shown in table no 2.2

A roof top rainwater harvesting is proposed using standard deign as given below for mine lease area and associated building at the mine core zone (Fig 2.1)

Fig 2.1: Standard Design of rooftop rain water harvesting structure

Proposed RWH Structure in core zone of Netrabandha Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

2. Pond

A pond is a body of freshwater smaller than a lake. Two Ponds has been proposed in lease to collect rainwater and seasonal flow. The dimension of P1 is 140*30*2m3 has been proposed in N- W corner of the lease area to collect available rain water flow. Pond P2 has been proposed in western side of the lease area with dimension of 200*50*2m3. The location of proposed P1 & P2 has been shown in Fig 2.2 and Fig 2.3. Total capacity of the pond has shown in table no 2.2. Pond design and pond slope design has shown in Fig 2.4 &2.5.

Fig 2.2: Proposed location of Pond (P1) and roof top RWH structure in lease area

Fig 2.3: Proposed location of Pond (P2) in lease area

S/n	Locatio			Log Type of Structure	Proposed Dimensions		
	ns Index	Lat	Log		Bund Length in m	Bund Max height in m	Capacity in
						neightinn	mo
1	P-1	21.882795	85.280346	Pond	140*30	2	8400
2	P-2	21.87649	85.282057	Pond	200*50	2	20000
3	BH-13	21.882815	85.282281	Roof top RWH	50*25*0.75*1.4		
					5		1326
						TOTAL	29726

Fig 2.4 Proposed Pond Designs of P1 and P2 in the Lease Area

Fig 2.5 Proposed Pond Slope Design

Fig 2.6: Approved mine plan of lease area

Proposed RWH Structure in core zone of Netrabandha Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.

Fig 2.7: Existing water harvesting structure in Buffer Zone

Proposed RWH Structure in core zone of Netrabandha Pahar Block Iron Ore Mine, Koira Block, Sundargarh District, Odisha.
2.3. Monitoring, Measurement and Capacity building

Monitoring and measurements of several parameters are part of water conservation strategy towards the motive of efficient management of water. The withdrawal of groundwater is regularly monitored and measured from the existing dug well. The water level is found at 3.7 to 36.3 m bgl in pre monsoonal period, which varies from 2.5-5 m bgl in the monsoonal period. The Netrabandha Pahar mine conducts regular capacity building of its maintenance staff that monitors and measures and keeping record of various data related to water use and water conservation. The workers have been trained for keeping record and onward submission of data as per the requirement. For monitoring of groundwater level in the area of Netrabandha Pahar mine, as per the guideline of CGWA, a piezometer has to be constructed at the area. The installation of piezometer is proposed exclusively for monitoring of groundwater level deploying automatic water level recorder with telemetric arrangement of data transmission.

7. Impact assessment of underground mining of Manganese on Ground Water in and around Miragpur, MP-

Click to view

MANAV RACHNA INTERNATIONAL INSTITUTE OF RESEACH AND STUDIES, FARIDABAD

Comprehensive Report on: **Groundwater Condition** in both core and buffer Zone of Miragpur Manganese Mine, Khairlangi Block, Balaghat District, Madhya Pradesh

Sneha Rai

Comprehensive Report on:

Groundwater Condition in both core and buffer zone of Miragpur Manganese Mine, Khairlangi Block, Balaghat District, Madhya Pradesh

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/s D P Rai,Nanhka,10East High Court Road, Ramdaspet,Nagpur-440010 Maharashtra, Ph. No 7122522724, Email id: <u>dprai.mines@gmail.com</u> By MRCAWTM - March 2022

Executive summary

An Underground Mine of Manganese Ore of M/s D P Rai is located at coordinate 21°37'56.9"N 79°49'56.2"E of village Miragpur, Balaghat district Madhya Predesh adjacent to the State Maharastra boarder. The mine was established in March 2006. The mine was previously developed as an open cast mine for ore extraction since April 2016. It is proposed to extend and expand the existing o/c workings in the strike direction to the east and west both and the Pit will be further deepened. The present study is made for obtaining and NOC from CGWA for extraction of maximum 68KLD groundwater during mining operation as per the approved mine plan. The mine discharge will remain below 100 KLD during all future expansion of mining operation during next 5 -10 years. The present report is based on the hydrogeological investigation made within core zone and its 10km radius buffer zone for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining renewal of NOC.

The study area falls under Wanganga river subbasin of Godavari basin and comprises of parts of Khairlangi Block of MP and Bhandara block of Maharastra both falls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation, Mansar Group of rocks of Proterozoic quartzite mica schist in the area. These are constituting hard rock aquifer of phreatic nature. The Thickness of aquifer is about 12-17m.The 24.288 ha mine lease area is located near water divide and having radiating flow direction, but no river/ stream generates from this area. The av annual groundwater level in the core zone remain 6m bgl in comparison to 5m level of buffer zone. Groundwater quality is fresh and potable in both core and buffer zone area and TDS remains below 1900 ppm varies from 150 to 1900 ppm in the study area.

As per the approved mine plan the dewatering of groundwater maximum 68KLD was obtained but the quantum of water generates as mine discharge remain largely below this limit around 8KLD in general. The water generated during mining processes containing heavy silt load. The entire water is reused in maintaining the green belt/horticulture and dust suppression within the ML area and for mining operation. Rainwater is harvested within the ML area through construction of water conservation pond. Roof top Rainwater harvesting structure is proposed as per building bylaw. The annual conservation through RWH&AR is about 0.14ham at present and will increase due to construction of rooftop RWH structure.

There is limited long term impact of groundwater dewatering by Miragpur mine on the study area, Thus the study recommend NOC may be provided for next 5 yr with maximum 68 KLD extraction from groundwater system as mine discharge.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/s D P Rai Nagpur is thankfully acknowledged.

Discussions with Mr. Abhishek Rai, Chairman cum Managing Director, regarding the history of mine establishment and its process of miningof Mn ore has helped us in understanding the process well and plan ourinvestigations according to scope of work is gratefully acknowledged. Help rendered by Shri Sudhakar Chande, Manager & Mr. Himanshu, Geologist in every stage of planning and execution, investigations in and around plant area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records many of them are reproduced in this report and forms part of annexure section.

At mine level, during days of field investigation we have received warm welcome and all hospitality and requisite support from mine team. We thankfully acknowledge Shri Sudhakar Chande Mines Manager and his team for their cooperation.

The report has been prepared by Ms Sheha Rai, Asstt Prof MRCAWTM and Sandeep Kumar RA MRCAWTM under the supervision of Prof (Dr) Arunangshu Mukherjee, Director MRCAWTM. Ms Alifia Ibkar, RAMRCAWTM helped Mr Sandeep Kumar in the field work and data collection.

It is to certify that MRCAWTM have investigated the area of Pandharwani Mine Khairlangi Balagahat and based on actual data collected from field and literature survey done, has prepared the report as per the format of CGWA.

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies (Deemed to be University under section 3 of the UGC Act, 1956)

Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121004

CONTENTS

Executiv	e summary	
Acknowl	edgement	
Format o	of Report	
Sr. NO.	DESCRIPTION	PAGE NO.
1.	Introduction	1-8
	1.1 Objective	1
	1.2 Scope of study	2
	1.3 Project description	2
	1.4 Land use and land cover change in the study area	2
	1.5 Topography and drainage	7
2.	Groundwater Situations	9-27
	2.1 Geology and geomorphology	09
	2.2 Climate and Rainfall:	10
	2.3 Groundwater regime monitoring	13
	2.4 Long term groundwater trend	18
	2.5 Groundwater quality	21
3.	Details of bore well proposed to be constructed	28
	3.1. Proposed Piezometer with Automatic water Recorder	
4.	Geophysical survey of study area	29-41
	4.1 Geophysical studies in and around the mine area	29
5.	Approved mine plan	42-45
	5.1 Year wise mine plan including excavation depth, area and mine seepage	42
6.	Use of water obtained from mine dewatering	46
7.	Comprehensive assessment of the impact on the ground water regime	47-53
	7.1 Impact on surface water sources	47
	7.2 Impact on ground water sources	50
	7.3 Socio-economic aspects	52
8.	Proposed measures for disposal of wastewater by mine drawing saline water	55
9.	Water conservation	55-58
	9.1 Water use & water balance	55
	9.2 Rainwater harvesting and Artificial recharge	56
	9.3 Monitoring, measurement & Capacity building	58
10.	Any other details pertaining to the project	59

LIST OF TABLES

SR. NO.	DESCRIPTION	PAGE NO.
1.1	LULC 2015 of study area	06
1.2	LULC 2021 of study area	06
2.1	Decadal rainfall in Balaghat district 2011-2020	12
2.2	District wise average annual rainfall and departure from Normal rainfall	12
2.3	Monthly rainfall of five years	12
2.4	Average monthly meteorological data of study area	12
2.5	Well inventory data of dug wells of core & buffer zone of Pandharwani mines	14
2.6	Block wise Dynamic groundwater resources of Khairlanji, MP &tumsar, Maharashtra	20
2.7	Analytical results of groundwater samples collected in Pandharwani mine	24
5.1	Details of earlier approved mining plans/scheme of mining	42
5.2	Year wise proposal and achievement from the mine is given in table below	43
6.1	Water utilization in Miragpur mine	46
7.1	Crop production details of Balaghat district, MP in kharif & Rabi	52
7.2	Population data of study area in parts of Khairlanji, tirodi&Lalbarra blocks	53
9.1	Water utilization in Pandharwani mine area	56
9.2	Ponds & water bodies of study area	57

LIST OF FIGURES

Sr. No. DESCRIPTION				
1.1	Location map of Miragpur Mn Mine, Balaghat district, Madhya Pradesh	03		
1.2	Google image showing Miragpur Mn Mine	04		
1.3	Map showing LULC of Miragpur Mn Mine of 10km buffer zone (Jan 2015	04		
1.4	Map showing LULC of Miragpur Mn Mine of 10km buffer zone (Jan 2022	05		
1.5	Digital elevation map in 10km buffer zone	07		
1.6	Slope map of Miragpur Mn mine in 10km buffer zone	08		
1.7	Topography Map of 10km buffer zone	08		
2.1	Map showing study area divided by state boundary of Madhya Pradesh and Maharashtr	15		
2.2	Key map showing Tube well, Dug well and Borewell locations within the mine of Miragpur Mn Mine on Google image and photo graph of measuring groundwater parameter.	16		
2.3	Topography of study area. Note the position of project area within the study area.	17		
2.4	DTW map of core and Buffer zone of Miragpur Mn Mine	17		
2.5	Groundwater contour map of Miragpur mine area	18		
2.6	Long term well hydrograph of wells of Balaghat district, Madhya Pradesh (source: WRIS online portal)	19		
2.7	Long term pre monsoon groundwater level tend in Balagaht district showing slightly increasing trend	20		
2.8	EC map of study area	21		
2.9	TDS map of study area	22		
2.10	Sub-divisions of the diamond field	25		
2.11	Distribution of water samples in Piper Trilinear Diagram	25		
2.12	US Salinity diagram of Pre-Monsoon 2019 and Post Monsoon 2019, Balaghat	27		
3.1	Proposed Piezometer with automatic water recorder	28		
5.1	Approved Mine plan of Miragpur Mine, Khairlangi Balaghaat	44		
5.2	Mining phase of driling at Miragpur mine	45		
7.1	Tube well and mine pit within mine lease area of the mine	47		

7.2	Google elevation profile of study area around Miragpur Mine from three direction	48
7.3	Groundwater contour map of Miragpur mine area	49
7.4	Existing abandon open cast mine pit and water harvesting pit near Miragpur mine (photo March 2022) and mine plan.	50
9.1	Existing rainwater harvesting pond cum storage tank in study area	55
9.2	Design of proposed rooftop rain water harvesting structure	57

Comprehensive Report onGroundwater Condition in both core and buffer zone of Pendharwani Manganese Mine, Khairlangi Block, Balaghat District, Madhya Pradesh

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

Point of Report Reply Enclosed SNo Brief about the proposed project giving location details, coordinates, google/ Yes [Chapter-1] [1.] toposheet maps, etc. demarcating the project area Land Use Land Cover of the surrounding area, Percentage of LULC categories Yes 1.1 Topography and drainage. Yes 1.2 1.3 Details of wetlands [Highlight protected wetlands / Ramsar sites / NLCP lakes/ other **Not Applicable** important wetlands in terms of dependencies of local communities if any] [2] Ground water situation in and around the project area including water level and Yes [Chapter-2] quality data and maps along with quality issues, if any. In case of mines, ground water conditions in both core and buffer zone should be described. Brief geology of the area Yes 2.1 Hydrogeology of the area 2.2 Yes 2.2.1 Aguifer description [type, depth, storativity, permeability and porosity] Yes 2.2.2 Ground water flow and aquifer interaction Yes [flow direction, Ground water – surface water connectivity] 2.2.3 Ground water level trend analysis Yes [pre – monsoon and post – monsoon] for 10 years 2.2.4 Hydrograph of the water level for 10 years Yes 2.2.5 Predicted water level declines for affected aquifers **Not Required** [Ground water modeling] as per norms

Format for Impact Assessment Report as per the CGWA Norms

	2.2.6 Ground water quality [pre - monsoon and post – monsoon]	Yes
	2.2.7 Water quality of nearby water bodies	Yes
[3.]	Details of the tubewells/ borewells proposed to be constructed. This includes the aquifer parameters, drilling depth, diameter, tentative lithological log, details of pump to be lowered, H.P. of pump, tentative discharge of tubewells/ borewells, etc. Locations to be marked on thesite plan/ map.	Yes [Chapter-2,3]
[4.]	Details of Geophysical studies carried out in and around the project area. Ground water resources computation of the block in which the project falls	Yes [Chapter-4]
	4.1 Results of Geophysical analysis [vertical electrical sounding (VES), horizontal profiling and imaging, transient electromagnetism method (TEM)] etc	Yes
[5.]	Approved Mine plan in case	Yes (Chapter-5)
	5.1 Year wise mine plan including excavation depth, area and mine seepage.	Yes
[6.]	Proposed usage of pumped water in case of infrastructure dewatering projects.	Yes (Chapter-6)
6.1	For drinking, irrigation etc.	Yes
6.2	Recharge	Yes
6.3	Runoff to stream	Yes
6.4	Benefitted area	Yes

SNo	Point of Report	Reply Enclosed
6.5	Dust suppression, Green belt development etc	Yes
[7.]	Comprehensive assessment of the impact on the ground water regime in and around the project area highlighting the risks and proposed management strategies proposed to overcome any significant environmental issues.	Yes [Chapter-4]
7.1	Impact on surface water sources	Yes (Chapter – 7)
7.2	Impact on groundwater sources	Yes
	7.2.1. A description of the impacts on environmental values that have occurred, or	Yes

	are likely to occur, because of any past ground water abstraction.	
	7.2.2 An assessment of the likely impacts on environment that will occur, or are likely to occur, because of the ground water abstraction for a five years period starting on the consultation day for the report; and over the projected life of the resource project area, affected area and radius of influence in case of dewatering	Yes
7.3	Socio-Economic Aspects:	Yes
	7.3.1 Settlements and population dynamics around project area	Yes
	7.3.2 Dependency on sources of water [surface or sub-surface]	Yes
	7.3.3 Ground water uses [e.g. irrigation (irrigation method, number of watering) water supply etc.]	Yes
	7.3.4 Improvement / decline in agricultural yield in last 5 years and likely impact after NOC	Yes
	7.3.5 Impact of proposed / existing project on local communities [based on local interactions (interactions must be with stakeholders like fishermen community, farmers etc.]	Yes
[8.]	Proposed measures for disposal of waste water by industries drawing saline water.	Not Applicable
[9.]	Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted.	Yes [Chapter-3]
	Brief write up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project.	Yes
	Details of water conservation measures to be adopted to reduce/ save the groundwater.	Yes
	- Total water balance chart showing the usage of water for various processes.	Yes
[10.]	Any other details pertaining to the project.	Annexure (s)

Report on:

Hydrogeological Investigation and Impact Assessment Report for Miragpur Manganese Ore Mine Balaghat District, MP

Introduction

The report is prepared as per the format prescribed by CGWA for impact assessment study, the Introductory chapter comprises the following subtitle for describing its

- 1.1 Objectives
- 1.2 Scope of the study
- 1.3 Project description-Plant, process, product and location
- 1.4 Land Use Land Cover and percentage of LULC categories
- 1.5 Topography and drainage.

1.10bjective

The Central Government had constituted the Central Ground Water Board as Authority vide notification number S.O. 38 (E), dated the 14th January,1997 to exercise powers under sub section (3) of section 3 of the Environment (Protection) act, 1986 (29 of 1986) for the purposes of regulation and control of Ground Water Management and Development. The Authority has been regulating ground water development and management by way of issuing 'No Objection Certificates' for ground water extraction to industries or infrastructure projects or Mining Projects etc., and framed and issued guidelines in this connection from time to time. The entire process of grant of No Objection Certificate shall be online through a web based application system. The latest guideline issued by Gazette Notification no 2941 on 24th September 2020 supersedes all earlier guidelines issued by the Central Ground Water Authority (CGWA). CGWA vide email dated 21st Nov 2020 and 13th Jan 2021 instructed the M/s D.P. Rai, Nagpur, Maharashtra to submit Impact assessment report along with undertaking for processing their application for regularization of groundwater abstraction for mining. There by M/s D.P. Rai, Nagpur, Maharashtra engaged Dr Arunangshu Mukherjee, CGWA Accredited Groundwater Professional vide email dated 30th Dec 2021 to carry out the hydro geological investigation along with impact assessment study incorporating socio-economic assessment study on groundwater regime due to withdrawal/ dewatering groundwater by Miragpur Manganese Ore Mine, **Balaghat** M/s D.P. Rai, Nagpur, Maharashtra as per the prescribed format of CGWA.

1.2 Scope of Study

The scope of study includes hydrological study around mine and providing certificated report along with providing guidance on techno-legal aspects and compliance for obtaining NOC for CGWA as per latest guidelines. Detailed hydrogeological investigations within core and buffer zones (10km radius study area) of **Miragpur Manganese Ore Mine, Balaghat** leased to M/s D.P. Rai, Nagpur, Maharashtra and assessment of impact of mining on groundwater regime in the study area which covers parts of Khairlanji block/tehsil, Balaghat district of Madhya Pradesh and some villages of Bhandara district, Maharashtra. As the mine is generating only 8m³/day discharge thus groundwater modeling is not required along with impact assessment report for this case as per the CGWA guideline.

1.3 Project description

M/s D.P. Rai, Nagpur, is a partnership firm registered under Indian Partnership Act, 1932. Miragpur Manganese ore mine is engaged in the mining activities since decades. Miragpur mine having an area of 24.288 ha & 4.339 ha. Presently mining is through underground method. Existing open pit size-4180 m² as on 1-04-2016- This is the Main Pit which was proposed to be extended along strike towards the western lease boundary and depth extension proposed up 330 MRL. The surface elevation at 24.288 ha & 4.339 ha mine lease area varies between 345 and 342 m amsl. The firm is well equipped with tools qualified personnel and required plans. Miragpur Mine is an underground mine for proposal of production of Mn ore of 1300 tons/Yr. Mn ore band, running from (N200W to S200E) direction with an average thickness of ore is 8 (Eight) meters. Dip of the ore body is approx. 250 towards (SW).

Location

Miragpur Manganese Ore Mine is located in Miragpur village, Tehsil Khairlanji, District Balaghat, Madhya Pradesh. Miragpur village is situated in the south west portion in Balaghat district, Madhya Pradesh. The study area falls under survey of India toposheet no F44N14. Miragpur mine is situated 50km from Balaghat Town and 25 km from Khairlanji tehsil headquarters and 130 km from Nagpur railway station. Mining lease area is surrounded by the agriculture land and small hillocks of weathered soil. Many shallow depths abounded open cast mines pits are present within the study area. The opening of Miragpur underground mine is located at coordinate 21°37'56.9"N 79°49'56.2"E (**Fig1.1**).The lease area of underground mine is not located within 10km radius of National Park /Wild Life Sanctuary / Protected area and don't falls under Coastal Regulation Zone (CRZ).

1.4 Land use and Land cover (LULC) change in the study area:

The total area of the Miragpur mine is 24.288 Ha (242800 m²) & 4.339 ha. The mine is situated in outer part of the Miragpur village surrounded by hills and forest area. The land use of the mining area is given in **Table no 1.1** and the percentage has been represented through a pie diagram in **Fig 1.2**. The nearest village is Jatapur Khappa located 0.8 km Comparison of LULC

during 2015 and 2021 within the 10 kms radius of mine area show marginal changes in agriculture use, forest cover, built up area, as shown in figs and tables -1.2 & 1.3, however area under water body has increased from 60 ha to 124 ha due to accumulation of water into some abandon mine pit sand due to construction of water conservation structures in the area.

Fig 1.1: Location map of Miragpur Mn Mine, Balaghat district, Madhya Pradesh

Hydrogeological Investigation and Impact Assessment Report on Miragpur Mine, Khairlangi Balaghat

Fig 1.2: Google image showing Miragpur Mn Mine

Fig 1.3: Map showing LULC of Miragpur Mn Mine of 10km buffer zone (Jan 2015

Hydrogeological Investigation and Impact Assessment Report on Miragpur Mine, Khairlangi Balaghat

Fig 1.4: Map showing LULC of Miragpur Mn Mine of 10km buffer zone (Jan 2022

Table 1.1	LULC	2015 of	Study	Area
-----------	------	---------	-------	------

Sr.no	LULC Type	Area (Ha)			
1	Water Body	123.58			
2	Build up Land	1329.71			
3	Agriculture land	18755.78			
4	Shrub land	2206.66			
5	Forest Land	252.86			
6	Barren Land	1058.79			
7	Hilly Terrain with Vegetation	7688.5			
Total Area (10km Buffer zone) 31415.88					

Table 1.2 LULC 2021 of Study Area

Sr.no	LULC Type	Area (Ha)		
1	Water Body	60		
2	Build up Land	419.75		
3	Agriculture land	19396.63		
4	Shrub land	1862.99		
5	Forest Land	310.08		
6	Barren Land	1171.76		
7	Hilly Terrain with	8194.38		
	Vegetation			
Total Area (10km Buffer zone 31415.59				

1.5 Topography and Drainage: The Miragpur mine belongs to Mansar Formation of Sausar Series. The Terrain is almost flat having some exposed rocks. The highest elevation is 466m amsl and lowest elevation is 267m amsl. The digital elevation model presented in Fig 1.5. The gradient of the study area has been measured by remote sensing data using elevation map in Fig 1.6. The western part and southern half of study area having southerly slope whereas the central (including mine area) and northeastern part having northeasterly slope. The area south of Bawanthadi River is having northerly slope.

Drainage: There is no water body and Nallah in the lease area. At a distance of 8km NW direction a seasonal river called Bawanthadi flows in E-W direction. Bawanthadi is a tributary of river Wainganga of Godavari basin. Wainganga river entering Balaghat district from its Northwestern part from the Seoni district, creates the boundary between Sehoni and Balghat district and flowing south through the lowlands, it enter the Bhandara district. The Rajiv Sagar (Bawanthadi) interstate irrigation project, between the states of Madhya Pradesh and Maharashtra, envisages construction of a dam across river Bawanthadi. It has been constructed near village Kudwa in Katangi Tehsil of Balaghat district, M.P. and village Sitekasa of Tumsar Tehsil of Bhandara district, Maharashtra.

Fig 1.5: Digital elevation map in 10km buffer zone.

Fig 1.6: Slope map of Miragpur Mn mine in 10km buffer zone

Fig 1.7: Topography Map map in 10km buffer zone.

2. Groundwater Situations

Large part of the study area belongs to Khairlanji block which is located in Southwestern part of Balaghat District Madhya Pradesh. Ground water is the main source of drinking as well as domestic purpose. However, the requirement of water in irrigation and agriculture is fulfilled mainly by river as well as rainwater. The rainwater also is the main source for recharge of groundwater of the area. The following major subtopics that are covered in this particular chapter are:

- 2.1 Geology and Geomorphology
- 2.2. Climate and Rainfall pattern
- 2.3 Groundwater regime monitoring
- 2.4 Long term groundwater trend
- 2.5 Groundwater resources
- 2.6 Groundwater quality

2.1. Geology and Geomorphology

Manganese deposit of Madhya Pradesh – Maharashtra belongs to Sausar Group of rocks, displayed in accurate shape band which runs over 200 km. from Ukwa in M.P. to Kachidhana via Tumsar-Bhandara& Nagpur dist. of Maharashtra. Mansar Formation of Sausar Group is folded and re-folded and thrusted by many cycles of deformations. Sausar sequence is rested over rocks of Gneissic complex with unconformity. Dolomites, Limestone, Mica Schist, quartzite, Biotite Granulite are the rock types associated with this series. Mica Schist, quartz mica schist along with Manganese have been made exposed in mine area by previous opencast activities. Mica Schist is coarse to fine grain rock with fish skin luster.

Geological Formation in the Study area

- Alluvium soil: On the basis of field study it has been observed that the lateritic soil is found with brown to red color. The average thickness of the soil is cover is 3m in study area.
- Mica Schist with Quartzite: It has been observed that the formation in the study area is trend in ENE-WSW and the trend of Manganese ore body is NNW-SSW. Mica Schist is coarse to fine grained with fish skin luster. Mica Schist is crenulated, filled with needles of stretched vitreous quartz. Quartz associated with schist is thick vitreous but crushed at places due to deformation.
- Manganese ore with Gondite: Manganese ore in Miragpur mine belong to Mansar Formation. Manganese ore is dark steel grey with Braunite as principal mineral associated with other oxide and silicate. Thetrendof the manganese ore deposit is mostly NNE-SSW and the angle of dip is varying from about 75° to 80°.

The manganese deposit of the Balaghat district, M.P., founds as NNE-SSW to ENE-WSW trending conformable bands in the form of lenses of varying sizes, enclosed within the metasedimentary sequence of Sausar Group of rocks of Precambrian age (Banerjee, et. al. 2007). The Madhya Pradesh-Maharashtra manganese belt is the largest manganese ore deposits of India which are intensely deformed and metamorphosed varies from green schist facies to upper amphibolite facies with gradual increase in the grade of metamorphism from East to West The regionally metamorphosed syngenetic sedimentary bodies of manganese ores in the Sausar Group of Balaghat district, Madhya Pradesh exhibit a definite trend in the formation and transformation of manganese oxide phases with progressive metamorphism. A regional trend is clearly noticeable from the paragenesis of Ore minerals in the manganese ore bodies from different metamorphic zones. Braunite forms at a very low temperature, appearing in the chlorite zone of regional metamorphism, and it continues in stable form right up to the sillimanite zone. Bixbyite as a high temperature mineral appears first in biotite zone and also appears in the sillimanite and almandine zone in the Balaghat

Stratigraphic succession of Sausar group (Bandyopadhyay, et. al., 1995)

FORMATION	LITHOLOGY				
Bichua Formation	Dolomite, Marble, Calc silicate gneiss schist.				
Junewani Formation	Metapelite (Mica Schist), Quartzite, granulite, biotite-Gneiss (Reworked basement)				
Charboli Formation	Quartzite, feldspathic Schists, Gneisses, Autoclastic Quartz, Conglomerate.				
Mansar Formation	Metapelite (mica-schists and gneisses), graphitic Schists, Phyllite quartzite, major manganese deposits and gondite.				
Lohangi Formation	Calc-Silicate Schists and gneisses, marble, Manganese deposits.				
Sitasaongi Formation	Quartz mica Schists, Feldspathic Schists, mica gneiss, Quartzite, Conglomerate.				
Tirodi Gneiss	Biotite gneiss, Amphibolite, Calc-Silicate Gneiss (Tirodi Gneiss), Granulites, Mica Feldspathic Schists.				
Uncc	onformity				
Older Metamorphics	Charnockite, Orthogneisses and Granite Biotite Gneisses, hornblende Gneisses, Amphibolites and calcgranulites				

Geomorphology: Morphologically the area having Alluvial plains, intermonnate valleys, denudational hills and peneplains. Natural levees can be seen in the bank of Bawanthadi River. Strems are showing dendritic pattern, drainage density is modarate.

2.2 Climate and Rainfall:

The mining area is situated in Khairlanji block of Balaghat district, but the study area covers the southwestern part of Balaghat district and northern part Tumsar block of Bhandara district in Maharashtra State, India. The nearest Meteorological station is at Satona (Hydromet Division,

IMD), which is located around 60 kms from the study area. Therefore, the data collected from IMD Satna and from the state data of Madhya Pradesh and Maharashtra have been considered to discuss the climate and rainfall of the study area (Table **2.1 to 2.4**)

Winds

The wind velocity is higher during the pre-monsoon period as compared to post monsoon period. The maximum wind velocity 7.7 km/hr observed during the month of June and minimum 3.9 km/hr during the month of December.

Temperature

The Climate of the district is sub- tropical or moderate characterized by a hot summer and general dryness except during the southwest monsoon season. The cold season usually begins from the month of December and continues to February. December is the coldest month with mean minimum temperature of around 8°C The winter is followed by the summer season which starts from March and continues to the middle of June having mean daily maximum temperature of 43°C in the month of May. The period from the middle of June to September is the southwest monsoon which is followed by the post monsoon or transition period in the months of October and November.

Humidity

The relative humidity is maximum during the southwest monsoon which ranges between 70-75%, it is comparatively drier in the rest of the year. The driest part of the year is the summer season, when relative humidity is less 34%. May is the driest month of the year.

Rainfall

Rain fall is the major source of the water of the area is discussed. The area is characterized by semi-arid type of climate, which is mainly having moderate dryness except during the monsoonal months. The normal annual rainfall of Balaghat district is 1471.6 mm. Balaghat district receives maximum rainfall during southwest monsoon period i.e. June to September and a very little rainfall during north-east monsoon (October to December). in the wake of thunderstorms and western disturbances. Thus, surplus water for ground water recharge is available only during the southwest monsoon period.

Table 2.1 Decadal Rainfall in Balaghat District (Source: WRIS online portal) 2011-2020								
Year	Actual Rainfall (mm)	Deviation (%)	Year	Actu Rainfall	ual (mm)	Deviation (%)	Average Rainfall (mm)
2011	1131.59	-1.69	2016	10	55.89	-8.27		
2012	1067.65	-7.25	2017	9	08.02	-21.11		
2013	1481.32	28.68	2018	10	-9.95			1151.14
2014	1154.34	0.27	2019	12	.63.39 9.75			
2015	1018.4	-11.53	2020	13	94.22	21.11		
Table	2.2 District wise	e average Annual	Rainfall	of and D	epartu	ıre(%) from	Nor	mal rainfall
District	Normal rainfall (mm) 1980-2010	Average rainfall (mm) 2011- 2020	Actual r (mm)	Departure (%) in ainfall 2021 from 2021 Normal Rainfall		De 202	eparture (%) in 21 from Average Rainfall	
Balaghat	1471.6	1151.14	1062	.69 -27.7			-7.03	

							Table	2.34	Month	y raini	all of 5	years	in mm								
Year	Jan	uary	Febr	uary	Mar	ch	A	line	Ma	ay	Jun	e	Jul	y	Aug	ust	Septer	nber	October	Nov	Dec
	Rain	%	Rainfa	*	Rainf	%	Rain	*	Rainf	*	Rainfal	x	Rainfal	*	Rainfall	*	Rainfall	%	Rainfall		
	fall	Dep.		Dep.	all	Dep.	fal	Dep.	all	Dep.	I I	Dep.	I	Dep.		Dep.		Dep.			
2013	18.4	-37	5.8	-71	37.4	220	6.4	36	2.6	-52	124.1	0	800.6	155	276.3	-16	195.1	7	4.9		
2014	0		0	-100	34.2	192	24.2	415	25	363	53.8	-57	378.7	20	209.6	-36	50.2	-72	3.6		
2015	0		71	253	21.6	85	0.6	-67	1	-81	145.1	17	146.9	-53	176.4	-46	172.9	-5	0		
2016	0.9	-97	8.5	-58	0.3	-97	3	-36	7.7	43	205.5	65	206.9	-34	212.5	-35	101.1	-44	4.1		
2017	12.9	-59	0		1.4	-88	3.8	-19	14.5	169	25.8	-79	207.6	-34	192.5	-42	152	-16	220.4		
WP.	6.44		17.06		18.98		7.6		10.2		110.9		348.14		213.46		139.26		46.6	12.6	1.76

Table 2.4 Average Monthly Meteorological Data of study area (source: IMD)

					<u> </u>				1	
Month	Tempe	perature Rel. Humidity (%)		nidity (%)	Vapour Pr	essure	Mean	Average	Cloud Amount	
	(°	C)	(hpa)		ı)	Wind	Rainfall	(ok	tas)	
	Min.	Max.	Morning	Evening	Morning	Eveni	Speed	(mm)	Morning	Evening
						ng	(Km/hr)	(2012-16)		
January	4	29.2	60	48	10.15	10.1	4	6.44	1.2	1.3
February	6.6	33.1	51	37	10.95	10.8	5.6	17.06	1	1
March	11.4	38.6	41	27	11.36	10.5	5.8	18.98	1.1	1.2
April	16.9	42.6	34	22	12.9	12.7	7.5	7.6	1.2	1.5
May	22.3	45	45	26	18.6	14.9	7.6	10.16	1.3	1.4

June	23.1	41.8	59	49	25.7	24.5	8.1	110.86	4	4.6
July	22.8	37	79	71	28.9	29.8	7.9	348.14	5.8	5.8
August	22.4	33.5	80	72	29.7	28.9	7.1	213.46	5.7	5.9
September	21.6	33.8	79	71	27.9	27.8	6.9	139.26	4.3	5
October	14.1	33.7	67	60	21.8	22.3	4.5	46.6	2.3	2.4
November	8	31.8	56	51	16.3	14.1	3.3	12.6	1.3	0.9
December	5	29.5	59	45	10.8	10.5	3.8	1.76	1	1

2.3 Groundwater regime monitoring

The study area comprises 10km radius zone in Miragpur Manganese mine that fall largely under Khairlanji block, Balaghat district, Madhya Pradesh and partlyin Tumsar Tehsil of Bhandara district, Maharashtra. Detailed hydrogeological study of both core zone and buffer zone of mine area is carried out. The study area having single aquifer formed in hard rock comprises Quartz Mica Schist.Total groundwater extraction from the Miragpur mine is 8KLD is through pump. Dug well are used for drinking and domestic purpose.

2.2.1 Detailed study of core and buffer zone

Major source of the water in the study area is south-west monsoon and very small contribution from north- east monsoon during winter. As per the field study it has been observed that in the study area groundwater is withdrawal from dug well and hand pump. Most of dug wells in study area having depth 4 to 8 m ground water. It varies during summer between 5m to 10m and 2.5m to 6.0m in winter. It has been observed that the borewells are often 20 to 40m in depth. Ground water is lying in weathered part of hard rock aquifer. Hard rock's comprise in the study area is Sausar sequence rested over rocks of Gneissic complex with unconformity. Dolomites, Limestone, Mica Schist, quartzite, Biotite Granulite are the rock types associated with this series. The movement of the ground water in deeper rocks is controlled by the nature, size opening and continuity of joints & fracture present in them. Wells in hard rock generally yield 50 to 70 m3 /day of all the rock types. Schist, phyllite and their variants form very poor aquifers yielding 10 to 30 m3 /day for heavy drawdown. Well inventory of study area in Pre Monsoon (Feb 2022) period showing water level varies within the range from 1.4 m to 8m bgl **(Table 2.5).**

Ta (Lat 8	Table2.5: Well inventory data of Dug wells of Core and buffer zone of Pandharwani Mine (Lat & Long data are as per GPS reading, DO, EC, pH, and TDS measured on site using calibrated Hanna portable equipment during Feb 2022).										
S. N.	Village	Latitude	Longitude	Elevati on (m amsl)	Water Level (m)	Dia me ter (m)	Dept h (m)	DO (mg/l)	EC (μS)	рН	TDS (ppm)
Core	Zone of Mine	-									
1	Sukdighat	21.64861	79.848755	342.09	7	2.7	8.5	4.53	1560	7.2	650
2	Sukdighat	21.64824	79.851071	353.48					2550	7.3	1230
3	Sukdighat	21.65027	79.852384	346.06	6.7	2.5	8.75		1990	7.8	1050
4	Pandharwani Mine lease	21.62827	79.844225	344.4	5	3	9.25	3.8	300	7.4	150
5	Ranimohgaon	21.61919	79.834619	329.81	6	2	8.25	4.03	1050	7.5	510
6	Gudhrughat	21.64652	79.834762	340.56	4.2	1.5	8.50	5.3	580	7.9	280
7	Sabargaon	21.64262	79.823377	342.44	6.5	2	9.0	2.6	3800	6.8	1900
8	Paraswadaghat	21.65951	79.807917	338.8	7	2.5	9.9	7.2	1005	7.3	520
Buffe	r Zone of Mine				-						
9	Birsula	21.6943	79.827105	351.11	4.5	2	8.0		1080	7.7	560
10	Sitakhor	21.71768	79.816533	341.65	5	2	8.60		540	7.4	260
11	Katedara	21.71186	79.792357	342.87	4	1.5	7.55		880	7.5	440
12	Tirodi	21.68626	79.739922	332.9	4.5	2	8.0		720	7.1	310
13	Bamani	21.61442	79.736391	306.33	3.5	2	7.0		820	7.1	444
14	Bonkatta	21.60287	79.753879	286.6	6	1.4	8.25		910	7.1	440
15	Garragussai	21.64557	79.776808	301.68	4.3	2.1	7.85		1111	6.7	560
16	Garragussai	21.64505	79.770978	306.13	5.1	2	6.8		1720	7.2	900
17	Sadabodi	21.6439	79.763553	309.29	4.4	1.5	8.25		1360	7.4	680
18	Garragussai	21.64269	79.779196	307.21					710	8	190
19	Churiya Par	21.57994	79.830656	296.62	4.5	1.5	8.55		1050	7.5	490
20	Kawlewada (Near Bawanthadhi river)	21.56613	79.804115	283.19	6	1.5	8.8		830	7.3	360
21	Katori	21.5756	79.896254	279.11	4.2	1.5	7.90		1870	7.4	940
22	Gorra Bodhi	21.66599	79.895665	331.16	4.8	2	9.0	4.2	680	7.4	320
23	Chikhla	21.66357	79.895535	333.95	6	2.8	8.5	2.05	1220	7.5	620
24	Chikhla	21.68264	79.906358	332.58	8	2	9.5	3.61	1910	6.9	960

Hydrogeological Investigation and Impact Assessment Report on Miragpur Mine, Khairlangi Balaghat

Fig 2.1: Map showing study area divided by state boundary of Madhya Pradesh and Maharashtra. Note the location of Miragpur Mn Mine at center and position of other villages on google image along with prominent roads. Inventory of wells of these villages are carried out under groundwater regime monitoring.

Fig2.2: Key map showing Tube well, Dug well and Borewell locations within the mine of Miragpur Mn Mine on google image and photo graph of measuring groundwater parameter.

Fig 2.3: Topography of study area. Note the position of project area within the study area.

Water level in 10km buffer zone in Study area

Groundwater Flow: The groundwater contour map generated using the intense monitoring in core and buffer zone of mining is depicted in **Fig 2.5**. The map showing clear cut development of groundwater dived running through the mine area. The GW flow direction largely coincides with the surface water flow direction as shown in fig 1.5. Thus mine is on groundwater divide and any dewatering from mine will not effects significantly the flow direction of groundwater of the area.

Fig 2.5 Groundwater contour map of Miragpur mine area.

INDEX-Red line shows groundwater divide, arrows indicating groundwater flow direction, values indicate groundwater elevation (m amsl), dots indicate data point used for generation of GW contour, buffer zone is marked by 10km radius circle. Note the mine position (green box) situated near GW divide.

2.4. Long term groundwater trend

The study area comprises 10km radius zone in Miragpur Manganese mine that largely fall under Khairlanji block, Balaghat district, Madhya Pradesh and partly to Tumsar Tehsil of Bhandara district, Maharashtra. The source of ground water such as dug well; hand pump and pond are used for domestic, irrigation and drinking in the core

zone villages. Out of 23 observation location of dug well, it has been observed that the water level (Pre monsoon 2022) of more than 10 villages around the buffer zone and core zone area is varying from 4 to 8m bgl. Long term trend analysis of data obtained from CGWB shows no significant change-rise or fall as depicted in Fig 2.6 and 2.7.

Fig 2.6: Long term well hydrograph of wells of Balaghat district, Madhya Pradesh (source: WRIS online portal)

2.3.1 Dynamic Groundwater Resource of study area: The groundwater resource as estimated by CGWB (2020) is presented in the table 2.6 for two blocks of MP and Maharashtra and are in safe category.

Fig 2.7: Long term pre monsoon groundwater level tend in Balagaht district showing slightly increasing trend

Sr no	State	District	Assessmen t Unit Name	Assessm ent Unit Type	Re f Ra	charge from ainfall- MON	Recharge from Other Sources- MON	Rechar ge from Rainfall -NM	Recharge from Other Sources- NM	Total Annual Ground Water Recharge (Ham)
1	Madhya Pradesh	Balaghat	Kharlangi	Block	-	5218	314	534.26	318	6384.26
2	Maharas htra	Bhandara	Tumsar	Block	46	66.057	1079.197	95.083	2387.81	8228.14
Asse Uni	essment it Name	Total Natural Discharges (Ham)	Annual Extractable Ground Wat Resource (Ham)	er (Ha	ition se m)	Total Extract on (Ham)	Annu Allocatio Domest on 202	al GW on for for ic Use as 5 (Ham)	Stage of Ground Water Extracti on (%)	Categorizatio n (OE/Critical/S emi critical/ Safe)
Kł	narlangi	430.0	5954.26	16	43	1987	38	8.00	33.371	Safe
Т	umsar	411.4	7816.74	3123	3.72	3744.4	1 68	0.53	47.903	Safe

			·	•
Tahle: 7 6 Block wise dy	vnamic groundwater	resources of Kharlangi	MP and Tumsar	• Mahara
TUDIC: 210 DIOCK WISC U	ynanne grounawater	resources or knariangly		,

2.5 Groundwater Quality

Based on the above study, different ground water parameters were computed, which include pH, TDS, EC, DO, Temperature. Ground water in study area is potable with pH ranging 6.4 to 8.5 and total dissolved solid (TDS) ranging from 120 to 1900 ppt and EC ranging from 300 to 3800 μ S. (**Fig 2.8 and 2.9**)

Groundwater quality in the study area is fresh and all major and trace elements are found within the BIS 10500 permissible limit. Thus is suitable for all domestic, industrial and irrigational use. The general parameters of groundwater in study area as analyses are given in Table 2.5. The comparison of data reveals that the area mining (Project Area) is having less TDS).

2.4.1. Groundwater quality of Mining area

Groundwater quality has been analyzed by collecting groundwater samples of existing tube well in study area. The groundwater test result through NABL accredited Lab show low in TDS in the range of 402 mg/l and all other parameters well within permissible range as shown in table 2.5.

EC Map of Miragpur mine in 10 km Buffer zone

Fig: 2.8 EC map of study area

Creative Enviro Services

Accreditated Organisation by National Accreditation Board for Testing and Calibration Laboratories (NABL), National Accreditation Board for training And Education (NABET) and ISO 9001:2015, ISO 14001:2004, OHSAS 18001:2007

	TEST REPORT	
Name & Address of the Customer To, M/s D.P. RAI "NANHAKA" 10, EAST HIGH COURT ROAD, RAMDASPERTH , NAGPUR (MS)	ULR No: TC687218000000 Despatch No: 2 •7 3 Issue Date : 13/07/2021 Client Ref: Nil Date : Nil	109P
Qty : 1 No. x 1 litre	Date of Collection	: 25/06/2021
Method of test : APHA 23rd edition	Date of Receipt	:01/07/2021
Packing :- Plastic bottle	Period of testing	:
Sample Condition at receipt: packed	Method of sampling	: BIS/3025
Sample Particulars: Ground Water	Sample tested as received	: OK
Sample collected by: CES Representative	Page no.	
No. of Sample - 18	Serial No. of Sample	109/7

Sr. No	Test Parameters	Unit	Method No.	Pandarwani Mine
				(109/7)
1	pH	-	4500 H+B	7.52
2	Conductivity	µmhos/cm	2510 B	986.10
3	Turbidity	NTU	2130 B	4.20
4	Total Solid	mg/lit	2540 B	487.00
5	Total Dissolved Solid	mg/lit	2540 C	402.00
6	Total suspended solid	mg/lit	2540 D	85.00
7	Total Alkalinity	mg/lit	2320 B	126.00
8	Total Hardness as CaCO3	mg/lit	2340 C	428.00
9	Ca Hardness as CaCO3	mg/lit	3500 B	212.00
10	Mg Hardness as CaCO ₃	mg/lit	3500 B	216.00
11	*Calcium as Ca	mg/lit	3500 B	84.96
12	*Magnesium as Mg	mg/lit	3500 B	52.48
13	Sulphates as SO4	mg/lit	4500- SO4 E	94.58
14	Chlorides as Cl	mg/lit	4500-Cl- B	131.96
15	Iron as Fe	mg/lit	3500- Fe D	<0.05
16	Nitrate as NO ₃	mg/lit	4500-NO3 B	19.58
17	Nitrite as NO ₂ -N	mg/lit	4500- NO2 B	<0.10
18	Phosphate as P	mg/lit	4500-PD	<0.10
19	Fluoride as F	mg/lit	4500- F D	<0.10
20	Copper as Cu	mg/lit	3500-Cu B	<0.10
21	Chromium as Cr6+	mg/lit	3500-Cr+ B	<0.10
22	*Coliform	MPN/100ml	IS:15185	<2.00
23	Manganese as Mn	mg/lit	3500- Mn B	<0.20

42, Doorsanchar Nagar, Near Savoy Complex, E-8 Extension, Gulmohar, Bhopal 46203970, P.) Telephone : 0755-4299319, Fax : 0755-4243510, Mobile : 9425009319

Email: creativelab.bpl@gmail.com, creative.bpl@gmail.com, Websearch : www.creativeenviroservices.com Not

e: No statutory liability will be accepted for samples not collected by Creative Enviro Services. The report shall not be reproduced except in full without premission of Laboratory, Creative Enviro Services, Bhopal The tests and/or calibration marked with an* are not accredited by NABL. 2.

No

1.2.3.

Creative Enviro Services 🛞

Accreditated Organisation by National Accreditation Board for Testing and Calibration Laboratories (NABL), National Accreditation Board for training And Education (NABET) and ISO 9001:2015, ISO 14001:2004, OHSAS 18001:2007

rt No.: TC-6872	
-----------------	--

	TEST REPORT				
Name & Address of the Customer To, M/s D.P. RAI "NANHAKA" 10, EAST HIGH COURT ROAD, RAMDASPERTH, NAGPUR (MS)	ULR No: TC68721800000109P 2073 Despatch No: Issue Date : 13/07/2021 Client Ref: Nil Date : Nil				
Qty : 1 No. x 1 litre	Date of Collection	:25/06/2021			
Method of test : APHA 23rd edition	Date of Receipt	:01/07/2021			
Packing :- Plastic bottle	Period of testing	:			
Sample Condition at receipt: packed	Method of sampling	: BIS/3025			
Sample Particulars: Ground Water	Sample tested as received	: OK			
Sample collected by: CES Representative	Page no.				
No. of Sample - 18	Serial No. of Sample	109/7			

Sr. No	Test Parameters	Unit	Method No.	Pandarwani Mine (109/7)
24	Zinc as Zn	mg/lit	3111-Zn B	<0.05
25	Total Chromium	mg/lit	3500-Cr+ B	< 0.05
26	Cadmium as Cd	mg/lit	3111-Cd B	<0.05
27	Lead as Pb	mg/lit	3111-Pb B	<0.05
28	Mercury as Hg	mg/lit	3112- Hg B	<0.01
29	Nickel as Ni	mg/lit	3111-Ni B	<0.05
30	Arsenic as As	mg/lit	3114-As B	<0.05
31	Sodium Na	mg/lit	3500- Na B	34.67
32	Potassium K	mg/lit	3500- K B	4.53
33	Boron as B	mg/lit	4500-B B	<0.1
34	Selenium as Se	mg/lit	3114-Se B	<0.05
35	COD	mg/lit	5220 B	<4.00
36	BOD (3 day 27degree)	mg/lit	IS 3025, P- 44	<2.00

Table 2.7: Analytical results of groundwater samples collected in Pandharwani mine

Water Quality Data in Piper Trilinear Diagram: Different graphical methods can be adopted for representing geochemical variation which gives a better insight into the groundwater quality monitoring. One such efficient method of representation is plotting of Hill Piper Trilinear diagram in which data are plotted in two triangle fields and one diamond field. The diamond is then classified under various categories emphasizing their characteristics. (Fig 2.10 and 2.11)

Fig 2.10: Sub-divisions of the diamond field

On the basis of data collection from CGWB report (2019-2020). It has been observed that out of 41 samples are concentrated in Area 6 indicating that: Non-carbonate hardness exceeds 50% i.e., Ca + Mg - (SO4 + Cl + NO3). Few samples come under Area 4 representing strong acids (SO4 + Cl + NO3) exceed weak acids (CO3 + HCO3). Only 2 samples can be noticed under Area 7: Non-carbonate alkali exceeds 50% i.e., Na + K-(SO4 + Cl + NO3).

Fig: 2.11 Distribution of water samples in Piper Trilinear Diagram

USSL Diagram: The United States Salinity Laboratory (USSL) (1954) and Wilcox (1955) established standards for irrigation water quality classification. The Fig.7.5 is a simple scatter chart of sodium hazard (SAR) on the Y-axis versus salinity hazard (EC) on the X-axis.Using the SAR and the EC value of 41 water samples of Balaghat area determines the quality classification of the water.

Based on the EC, irrigation water can be classified into four categories; include:

- I. Low-salinity water (C_1) can be used for irrigation with most crops on most soils with little likelihood that **soil salinity** will develop.
- II. Medium-salinity water (C_2) can be used if a moderate amount of leaching occurs. Plants with moderate salt- tolerance can be grown in most cases without special practices for salinity control.
- III. High-salinity water (C₃) cannot be used on soils, special management for salinity control may be required and plants with good salt tolerance should be selected.
- IV. Very high salinity water (C₄) is not suitable for irrigation under ordinary conditions.

Sodium Adsorption Ratio: High sodium in irrigation water reduces the permeability of soil.The USSL diagram based on SAR divided to four categories included:

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$

- I. Low-sodium water (S₁) can be used for irrigation on almost all soils.
- II. Medium-sodium water (S₂) will present an appreciable sodium hazard in certain fine-textured soils. This water may be used on coarse-textured or organic soils with good permeability.
- III. High-sodium water (S₃) may produce harmful levels of exchangeable sodium in most soils and will require special soil management.
- IV. Very high sodium water (S₄) is generally unsatisfactory for irrigation unless special action is taken, such as addition of gypsum to soil (Lyerly and Longenecker, 1957).

Data Analysis:

On the basis of samples collected from the study area, it can be observed that out of 41 samples of Pre and Post Monsoon 2019, most of the samples are concentrated under C2S1, C2S2 and C3S2categories indicating low to medium sodium hazards with medium to high salinity. Out of these, few samples are scattered under C3S3 and C3S4 categories representing high salinity with high sodium hazard and high salinity with very high sodium hazard respectively (**Fig 2.12**).

3. Details of bore well proposed to be constructed

3.1. Proposed Piezometer with Automatic water Recorder

A piezometer with automatic water level recorder has been proposed with using standard design near to mine office within the lease area. The coordinate of the proposed point is 21.632513, 79.832085. The Automatic water level recorder has been proposed in exiting piezometer well for the purpose of continuous monitoring of water fluctuation and continuous data acquisition.

Fig 3.1: Proposed Piezometer with automatic water recorder

4. Geophysical Survey of Study area

Surface geophysical investigation involving resistivity survey was taken up in the area covering nearly 1.5 line km area. Five VES (vertical Electrical sounding) was conducted to know the subsurface geohydrological condition in the core zone. The data so obtained is interpreted for use in combination with lithologs obtained during exploratory drilling carried out for ore.

4.1 Geophysical Studies in an around the Mine area

Geophysical/Vertical Electrical Sounding is a technique to delineate the weathered, fractured zone and hydro geological suitability. VES technique is effective to delineate the hard terrain. Geophysical / VES investigation has been carried out at five locations in an around the mine area. Schluberger electrode configuration in the study area has been conducted to delineate the distribution of subsurface rocks. The usual practice in the field is to apply an electrical direct current (DC) between two electrodes implanted in the ground and to measure the difference of potential between two additional electrodes that do not carry current. Total five numbers of VES (VES 1 to VES 5) have been carried out at site for detection of ground water in alluvium zone of subsurface and different type of rocks. All the data sheets are given below with tabulated interpretation & recommendations.

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

FROM VES-1 TO VES-5

S.N	AB/2 (in Mtr)	MN/2 (in Mtr)	VES-1 APPARENT RESISTIVITY (OHM -Mtr)	VES-2 APPARENT RESISTIVITY (OHM -Mtr)	VES-3 APPARENT RESISTIVITY (OHM -Mtr)	VES-4 APPARENT RESISTIVITY (OHM -Mtr)	VES-5 APPARENT RESISTIVITY (OHM -Mtr)
1.	2	1	2.42	3.47	3.14	2.98	4.17
2.	3	1	2.91	3.93	4.28	5.84	6.24
3.	4	1	4.17	4.52	4.52	10.27	9.02
4.	5	1	6.21	7.83	8.21	14.05	12.55
5.	5	2	6.85	7.51	7.58	13.55	11.01
6.	8	2	10.83	10.64	11.59	18.61	12.06
7.	11	2	13.68	12.49	14.51	15.43	13.96
8.	14	2	14.92	12.66	15.83	16.28	14.17
9.	17	2	18.13	16.11	16.34	21.04	18.35

10.	20	2	21.46	19.59	21.77	24.57	21.77
11.	20	5	22.97	23.20	25.32	26.03	20.02
12.	25	5	26.76	28.65	32.23	30.91	24.88
13.	30	5	34.36	33.26	37.38	36.01	31.88
14.	35	5	42.97	36.94	42.97	42.22	36.56
15.	40	5	50.96	42.55	47.50	43.54	42.55
16.	45	5	55.29	49.00	50.26	45.23	46.49
17.	50	5	69.97	53.65	55.98	52.87	48.98
18.	50	10	72.00				54.28
19.	60	10	90.16				72.24
20.	70	10	105.55				84.44
21.	80	10	124.68				91.04
22.	90	10	139.52				110.61
23.	100	10	157.05				129.06

GRAPHICAL REPRESENTATION OF REISTIVITY SURVEY

<u>VES -1</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

✤ LOCATION – IN MIRAGPUR MINE (24 HACT)

✤ LAT - 21°37'55.78"N LONG - 79°49'54.35"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.513	2.42
2.	3	1	12.56	0.232	2.91
3.	4	1	23.56	0.177	4.17
4.	5	1	37.69	0.165	6.21
5.	5	2	16.49	0.416	6.85
6.	8	2	47.12	0.230	10.83
7.	11	2	91.89	0.148	13.68
8.	14	2	150.8	0.099	14.92
9.	17	2	223.84	0.081	18.13
10.	20	2	311.02	0.069	21.46
11.	20	5	117.81	0.195	22.97
12.	25	5	188.50	0.142	26.76
13.	30	5	274.89	0.125	34.36
14.	35	5	376.99	0.114	42.97
15.	40	5	494.8	0.103	50.96
16.	45	5	628.32	0.088	55.29
17.	50	5	777.54	0.090	69.97
18.	50	10	376.99	0.191	72.00
19.	60	10	549.78	0.164	90.16
20.	70	10	753.98	0.140	105.55
21.	80	10	989.6	0.126	124.68

22.	90	10	1257	0.111	139.52
23.	100	10	1555	0.101	157.05

GRAPH B/W APPARENT RESISTIVITY& DEPTH

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho-log) expected	from	to	
1.	Probability of Soil	0	3	
2.	Probability of red laterite soil	3	5	
3.	Probability of yellow soil or weathered Mica Schist	5	14	
4.	Probability of hard & dense Mica schist	14	40	
5	Probability of fractured, layered, jointed Mica schist	40	45	
6.	Probability of hard compact Mica Schist	45	100	

PROBABLE SUB SURFACE LITHOLOG

<u>VES -2</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

✤ LOCATION – NEAR KALA GADDA (OLD PIT)

✤ LAT - 21°37'52.40"N LONG - 79°50'6.30"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.738	3.47
2.	3	1	12.56	0.313	3.93
3.	4	1	23.56	0.192	4.52
4.	5	1	37.69	0.208	7.83
5.	5	2	16.49	0.456	7.51
6.	8	2	47.12	0.226	10.64
7.	11	2	91.89	0.136	12.49
8.	14	2	150.8	0.084	12.66
9.	17	2	223.84	0.072	16.11
10.	20	2	311.02	0.063	19.59
11.	20	5	117.81	0.197	23.20
12.	25	5	188.50	0.152	28.65
13.	30	5	274.89	0.121	33.26
14.	35	5	376.99	0.098	36.94
15.	40	5	494.8	0.086	42.55
16.	45	5	628.32	0.078	49.00
17.	50	5	777.54	0.069	53.65

<u>VES -2</u>

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho log) expected	from	to	
1.	Probability of Soil	0	4	
2.	Probability of red laterite soil	4	8	
3.	Probability of yellow soil or weathered Mica Schist	8	15	
4.	Probability of hard compact Mica Schist	15	50	

<u>VES -3</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

✤ LOCATION – NEAR MIRAGPUR TO RANI MOHGAON ROAD

✤ LAT - 21°37'51.10"N LONG - 79°50'12.10"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.668	3.14
2.	3	1	12.56	0.341	4.28
3.	4	1	23.56	0.192	4.52
4.	5	1	37.69	0.218	8.21
5.	5	2	16.49	0.460	7.58
6.	8	2	47.12	0.246	11.59
7.	11	2	91.89	0.158	14.51
8.	14	2	150.8	0.105	15.83
9.	17	2	223.84	0.073	16.34
10.	20	2	311.02	0.070	21.77
11.	20	5	117.81	0.215	25.32
12.	25	5	188.50	0.171	32.23
13.	30	5	274.89	0.136	37.38
14.	35	5	376.99	0.114	42.97
15.	40	5	494.8	0.096	47.50
16.	45	5	628.32	0.080	50.26
17.	50	5	777.54	0.072	55.98

VES -3

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho log) expected	from	to	
1.	Probability of Soil	0	4	
2.	Probability of red laterite soil	4	8	
3.	Probability of yellow soil or weathered Mica Schist	8	18	
4.	Probability of hard compact Mica Schist	18	50	

<u>VES -4</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

✤ LOCATION – NEAR CHOPRA MINE

✤ LAT - 21°37'49.45"N LONG - 79°50'25.70"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.633	2.98
2.	3	1	12.56	0.465	5.84
3.	4	1	23.56	0.436	10.27
4.	5	1	37.69	0.373	14.05
5.	5	2	16.49	0.822	13.55
6.	8	2	47.12	0.395	18.61
7.	11	2	91.89	0.168	15.43
8.	14	2	150.8	0.108	16.28
9.	17	2	223.84	0.094	21.04
10.	20	2	311.02	0.079	24.57
11.	20	5	117.81	0.221	26.03
12.	25	5	188.50	0.164	30.91
13.	30	5	274.89	0.131	36.01
14.	35	5	376.99	0.112	42.22
15.	40	5	494.8	0.088	43.54
16.	45	5	628.32	0.072	45.23
17.	50	5	777.54	0.068	52.87

<u>VES -4</u>

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)			
	(litho-log) expected	from	to		
1.	Probability of Soil	0	2		
2.	Probability of red laterite soil	2	8		
3.	Probability of yellow soil or weathered Mica Schist	8	20		
4.	Probability of hard & dense Mica schist	20	35		
5	Probability of fractured, layered, jointed Mica schist	35	45		
6.	Probability of hard compact Mica Schist	45	50		

<u>VES -5</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

◆ LOCATION – IN FRONT OF PANDHARWANI MINE GATE

✤ LAT - 21°37'42.45"N LONG - 79°50'40.75"E

	10.10				
S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.887	4.17
2.	3	1	12.56	0.497	6.24
3.	4	1	23.56	0.383	9.02
4.	5	1	37.69	0.333	12.55
5.	5	2	16.49	0.668	11.01
6.	8	2	47.12	0.256	12.06
7.	11	2	91.89	0.152	13.96
8.	14	2	150.8	0.094	14.17
9.	17	2	223.84	0.082	18.35
10.	20	2	311.02	0.070	21.77
11.	20	5	117.81	0.170	20.02
12.	25	5	188.50	0.132	24.88
13.	30	5	274.89	0.116	31.88
14.	35	5	376.99	0.097	36.56
15.	40	5	494.8	0.086	42.55
16.	45	5	628.32	0.074	46.49
17.	50	5	777.54	0.063	48.98
18.	50	10	376.99	0.144	54.28
19.	60	10	549.78	0.131	72.24
20.	70	10	753.98	0.112	84.44
21.	80	10	989.6	0.092	91.04

22.	90	10	1257	0.088	110.61
23.	100	10	1555	0.083	129.06

<u>VES -5</u>

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOGY

S,N.	Sub surface data	Depth below Ground Level (m)				
	(litho-log) expected	from	to			
1.	Probability of Soil	0	2			
2.	Probability of red laterite soil	2	5			
3.	Probability of yellow soil or weathered Mica Schist	5	17			
4.	Probability of hard & dense Mica schist	17	45			
5	Probability of fractured, layered, jointed Mica schist	45	50			
6.	Probability of hard compact Mica Schist	50	100			

5. Approved Mine Plan

5.1: Year Wise Mine plan Including Excavation Depth, Area and Mine Seepage

Miragpur Manganese mine is located in Miragpur village, Tehsil Khairlanji, District Balaghat, Madhya Pradesh. Miragpur village is in south west portion in Balaghat district, Madhya Pradesh. The total lease area of Miragpur Mine is 24.288 ha & 4.339 ha. It extracts Mn by underground methods.

Method of Mining: Stopping is the opening of large underground rooms, or stope, by the excavation of ore. Stopping is practiced in underground mineral mining when the surrounding rock is strong enough to permit the drilling, blasting, and removal of ore without caving. Existing open pit size-4180 m² as on 1-04-2016- This is the Main Pit which was proposed to be extended along strike towards the western lease boundary and depth extension proposed up 330MRL

The u/g mining of ore-deposits in the Lease area is divided in two phases.

- PHASE-1:-consists of mining in the area already explored by drilling. This part of lease shall have (a) Open cast workings and (b) U/G workings below the UPD of open cast workings.
- ii) **PHASE-2**:-During Phase-1 workings, exploration will be carried out by drilling as proposed in the remaining area still unexplored. When exploration yields positive result and ore-reserves are established, further development and stopping will follow in the Phase-2.

Date and reference of last approved MP/SOM/RMP/MMP							
Sl. No.	Type of document & rule under which prepared	Approval letter No. & date	Lease area for which approval given (ha)	Proposal from –to (period of years)			
1.	Mining Plan	BGT/Mn/MPLN/907/NGP Dated 30-11-2005	Lease area: 24.288ha	2006-07 to 2010-11			
2.	Scheme of Mining	-	Lease area: 24.288ha	2011-12 to 2015-16			
3	Modification in approved Mining Plan	BGT/Mn/MPLN/907/NGP Dated 11-03-2016	Lease area: 24.288ha	2016-17 to 2020-21			

Table 5.1: Details of Earlier Approved Mining Plans / Schemes of Mining

Details of last modifications if any (for the previous approved period) of approved MP/SOM, indicating date of approval, reason formodification

Modification in Approved Mining Plan17 MC	7(3) of CR,2016 i)Increase in Production ii)Lease period extension from 20 to 50 years	24.288 Ha	03-11- 2016	2016-17 to 2020-21
--	---	--------------	----------------	--------------------

The formation of the area belongs to Mansar formation of Sausar Group of Mesoproterozoic in age. Lease area is explored by present pit up to MRL 350 and 1323 meter of exploratory drilling comprising 21 bore holes. Exploration proved "Mn" "Ore Body" of 8.0 meter average thickness.

5.2 Year wise proposal and achievement from the mine is given in table below

				Proposal		
		Soil/murrum	Waste	Total O.B.	Mineral mt.	SR= OB :
	Year	m ³	m ³	m ³	Manganese(ROM)	ore in m ³
Proposal	2016-17	17521.00	58916.00	58916.00	68572.00	Nil
period	2017-18	12000.00	33949.00	33949.00	58432.80	Nil
	2018-19	29853.00	33949.00	33949.00	39602.5	Nil
	2019-20	29853.00	33949.00	33949.00	79590	Nil
	2020-21	29853.00	33949.00	33949.00	124691	Nil
	Total	119080.00	194712	194712	370888.30	

	Achievement								
		Soil/murrum	Waste	Total	Mineral mt.	SR= OB:			
	Year	m ³	m ³	O.B. m ³	Manganese(RO M)	ore in m ³			
Proposal	2016-17	-	-	-	328	Nil			
period	2017-18	-	-	-	1231	Nil			
	2018-19	-	-	-	1087	Nil			
	2019-20	-	-	-	104	Nil			
	2020-21	-	-	-	Awaited	Nil			
	Total	-	-	-	2750				

Fig 5.1 Approved Mine plan of Miragpur Mine, Khairlangi Balaghaat

Fig 5.2 Mining phase of driling at Miragpur mine

6. Use of water obtained from mine dewatering

As per the approved mine plan the Miragpur mine has a discharge of 8 KLD or 8m³/day The entire water is utilize as per the Table 6.1.

Table 6.1 Water utilization in Miragpur mine (Area = 24.288 ha)			Table 6.1a.Water utilization in Miragpur mine(Area = 4.339 ha)				
Sr.no	Purposes	Environmental		Sr.no	Purposes	Enviro	nmental
		Clearance (68KLD)				Clearance (4 KLD)	
		Actual	Proposed			Actual	Proposed
		Discharge	(KLD)			Discharge	(KLD)
1	Dust		10	1	Dust		1
	suppression				suppression		
2	Green belt	8 KLD	10	2	Green belt	0 KLD	1
3	Domestic		6	3	Domestic		1
4	Drilling		10 (Utilized)	4	Drilling		1
5	Sand Stowing		20		Total		4
Total]	56				

6.1 For Drinking – The mine discharge is not used for drinking. Drinking water for the mine is obtained from existing dug well within ML area.

6.2 Irrigation- During monsoon small quantity of water is released from storage tank for irrigation. However, 10KLD mine discharge is used for maintaining green belt.

6.3 Recharge- The mine discharge after three step of de-siltation is stored in a recharge cum storage pond of nearly 0.15ha with a depth of av 1.5m thus having storage capacity of 0.25ham nearly 25% can be taken as recharge from this tank

6.4 Runoff to stream- No discharge is released to any stream from the Miragpur mine.

6.5 Benefitted area- Nearby villagers of village Miragpur

6.6 Dust suppression, green belt development- as shown in table 8KLD is used for this purpose.

7. Comprehensive assessment of the impact on the ground water regime

Comprehensive assessment of the impact on the ground water regime in and around the project area highlighting the risks and proposed management strategies proposed to overcome any significant environmental issues.

The present phase of Miragpur Mine is an underground mine for proposal of production of Mn ore of 1300 tons/Yr. There is one existing pit. Total 21 bore holes have been drilled as per last approved plan. No fresh reserves are estimated, reserves are kept as per last approved plan. Existing open pit size-4180 m² as on 1-04-2016- This is the Main Pit which was proposed to be extended along strike towards the western lease boundary and depth extension proposed up 330 MRL. The surface elevation at 24.288 ha mine lease area varies between 345 and 342 m amsl. It is proposed to extend and expand the existing o/c workings in the strike direction to the east and west both and the Pit will be further deepened. However, beyond the existing pit in the east and west direction, there is virgin ground where surface RL is 360/361MRL. There exist no natural surface water drainage/ nala/stream within the mine lease area. Groundwater occurrence is restricted only to the phreatic aquifer developed in the weathered zones of quartz mica schist, the host rock. The extracted groundwater from mine is fully utilized for mining operation and maintaining green belt within ML area after de-siltation at three levels. As such there is no significant impact of mining on groundwater regime in this hard rock terrain as the radius of influence is very much restricted due to high heterogeneity.

Fig 7.1 Tube well and mine pit within mine lease area of the mine

7.1. Impaction surface water sources– The Miragpur Mine is situated on a local high within a regional low as depicted in the Fig 7.2. No nala/stream exists or generates from ML area of Miragpur mine. The ML area is not situated within any wetland zone and not part of any national

park etc. Other existing small ponds/ water bodies within core and buffer zone has been investigated and the water quality is found normal.

7.1.1 Diversion of existing channels [constructed dam/barrages/weir/canals/hydro-electric projects] – No existing channel, constructed dam/barrages/weir/canals/hydro-electric projects etc need to be diverted due to the project. Thus 7.1.1 is not applicable.

7.1.2 Change in land use [change in flood plain, lotic & lentic systems etc.]-No nala/stream/ river exist or generates from ML area of Pandharwani mine. The ML area is not situated within any wetland zone thus change in land use in flood plain, lotic & lentic systems etc is not applicable.

Fig 7.2 Google elevation profile of study area around Miragpur Mine from three direction.

7.1.3 Current& Potential threats- The ML area is situated onto a water divide from where no nala stream is generating nor any spring ever exist in the area. However, due to moderate rainfall of >1150mm with about 70 rainy days good quantum of runoff (\sim 7.7ham/yr) generates from the area as calculated considering about 45% runoff coefficient-

24.288 ha x 1.151m x 0.45= 12.57ham/yr.

Garland drains are existing to channelize the generated runoff for impounding the water into a water conservation tank. Runoff collected within the pre-existing abandon opencast pit of Pandharwani mine lease area is also gainfully utilized for conservation. It is observed that the core zone having average groundwater level 6m bgl in comparison to that of buffer zone av 5m bgl. This can be due to the higher surface elevation of core zone, which is found av. 342 m amsl, in comparison to buffer zone of 315m amsl. To negotiate any potential threat of groundwater

decline in the core zone area rainwater harvesting involving abandon mine pits and ponds are in practice.

7.2 Impact on groundwater sources- The Miragpur mine lease area is in Khairlangi block of Balaghat district, MP which is categorized under safe category (Stage of GW Extraction 33%) by the latest estimation carried out by CGWB (2020). The groundwater levels measured in study area remain shallow (4-8m) throughout the year with 2-3m fluctuation. The area is part of hard rock terrain and consist only phreatic aquifer developed over the weathered zone of quartz mica schist. The thickness of the weathered zone is restricted to top 12-17 m as observed along open case mine pits and by geophysical investigations. Both dug wells and hand pumps are tapping this phreatic aquifer. Bore wells are scanty having a depth of maximum 30m tapping weathered zone and occasional fractures. Existing open pit size-4180 m². This is the Main Pit which was proposed to be extended along strike towards the western lease boundary and depth extension proposed up 330MRL. From the bottom of Open cast working of Incline shafts were proposed for development u/g ore body. Little water extracted from mine as mine discharge (8KLD) is mainly the seepage from phreatic zone through pre-existing exploratory holes within mine tunnel or from wall seepage from top. The phreatic aquifer zone is protected and recharged by construction of rainwater harvesting ponds and through abandon open case pits in the core zone of mining.

Fig 7.3 Groundwater contour map of Miragpur mine area. INDEX-Red line shows groundwater divide, arrows indicating groundwater flow direction, values indicate groundwater elevation (m amsl), dots indicate data point used for generation of GW contour, buffer zone is marked

occur, because of any past ground water abstraction. Existing open pit size-4180 m² as on 1-04-2016- This is the Main Pit which was proposed to be extended along strike towards the western lease boundary and depth extension proposed up 330MRL. As such, o/c workings are restricted to a depth of 14m at 347 MRL in view of the land degradation as the area is agricultural land and

locals resist it. From the bottom of Open cast working of Incline shafts were proposed for development u/g ore body. It is proposed to extend and expand the existing o/c workings in the strike direction to the east and west both and the Pit will be further deepened. However, beyond the existing pit in the east and west direction, there is virgin ground where surface RL is 360/361MRL. The pit so developed is presently used as first settling pit for mine discharge. All runoff generated within the pit of abandon OC mine thus also collected and stored at final conservation pond. It was observed in the LULC map that area covered under water body has increased from 60 ha to 123ha (Table 1.2).

7.4 Existing abandon open cast mine pit and water harvesting pit near Miragpur mine (photo March 2022) and mine plan. Note the bottom of OC pit in plan and photo shown by arrow.

7.2.2 An assessment of the likely impacts on environmental that will occur, or are likely to occur, because of the ground water abstraction for a five-year period starting on the consultation day for the report; and over the projected life of the resource project area, affected area and radius of influence. The Miragpur mining lease was granted to M/s D.P. Rai in the year 2006 for 20 year over an area of 24.288 ha & 4.339 ha (As per mine plan). Existing open pit mine have an area

4180 m² up to MRL 350 and 1323 meter of exploratory drilling comprising 21 bore holes. It is proposed to extend and expand the existing o/c workings in the strike direction to the east and west both and the Pit will be further deepened. However, beyond the existing pit in the east and west direction, there is virgin ground where surface RL is 360/361MRL. It is proposed to start u/g mining as soon as minimum cover required for u/g mining is achieved. O/C workings are completed in the second year (ending 2022-23). U/G workings will be commenced from 347MRL (UPD) in the year 2023-24 & continue for three years (2023-24,2024-25 & 2025-26) & Conceptual period.

7.3. Socio-Economic Aspects:

7.3.1 Settlements and population dynamics around project area

The study area comes under rural. There exists about 35 villages in the study area and their details are given in Table 7.1 and 7.2.

Table 7.1 Crop production details of Balaghat District Madhya Pradesh in kharif andRabi							
	Kharif		Rabi				
Sr. no	Crops	(Ha)	Crops	(Ha)			
1	Rice	244.9	Linseed	19.0			
2	Minor Millets	12.8	Wheat	18.4			
3	Pigeonipea	7.1	Chickpea	10.4			
4	Maize	05.6	Rapeseed/ mustard	7.30			

There is no impact of groundwater withdrawal by Miragpur Mn Mine on the study area, study can recommend NOC may be extended for next 5 yr with existing 8KLD extractions from groundwater system.

7.3.2 Dependency on sources of water [surface or sub-surface] the area by and large depends on rainfed agriculture with supportive irrigation. Surface water irrigation using canal water is the main source of irrigation within the buffer zone. Local canals network is developed using the water of minor irrigation projects like Hirapur, Tirodi, Sitalgarh and Sadabodi Dam/Reservoirs. Water bodies developed on abandon mine pits are also used as sources of water for irrigation along with some dug wells. Drinking water is mainly catered by groundwater through dug wells and hand pumps. Industrial use of water in the study area is largely remainswithin the mining sector. Several open cast and underground mine lease area exist within the study area. Mine discharge is the main source of water for mining operat ion. No other significant industrial use exists in the area.

	-	-	-	-	1	1
S. No.	Location	House	Total	Male	Female	Area (Ha)
			Population			
1	Bhandarbodhi	838	3520	1690	1830	1412.2
2	Birsula	186	2620	1309	1311	363.3
3	Bonkatta	852	3403	1741	1662	195.3
4	Chhatera	430	1746	893	853	422.6
5	Chikhla	607	2316	1166	1150	873.3
6	Churiya Par	249	960	484	476	606.1
7	Dudhara	285	984	492	492	257.2
8	Fulchur	489	1858	891	967	742.3
9	Garragussai	119	498	242	246	221.1
10	Goorabodi	239	761	392	369	352.2
11	Gudhrughat	452	1732	830	902	403.8
12	Hardoli	732	3126	1523	1603	704.6
13	Hatoda	328	1333	664	669	483.55
	HirapurReservio	134	507	241	266	302
14	ur					
15	Jamkhari	172	554	259	295	311.6
16	Katedara	319	1415	733	712	466.1
17	Katori	701	2726	1365	1361	932
18	Kawlewada	571	2179	1067	1112	541.34
19	Khoka	280	1269	635	634	283.12
20	Miragpur	389	1418	712	706	328.2
21	Mohogaon	401	1477	746	731	378.42
22	Murjhad	216	907	450	457	448.71
23	Nandi Gaon	426	1848	923	925	447.1
24	Nawegaon	322	1340	659	681	282.9
25	Pandarwani	190	711	332	379	281.1
26	Paraswadaghat	662	2583	1230	1353	889.47
27	Pind k Par	460	1927	949	978	593.42
28	Pulputta	613	2691	1332	1359	697.7
29	Sabargaon	434	1533	748	785	547.83
30	Sadabodi	181	721	354	367	208.83
31	Salibardi	771	2839	1375	1464	870.3
	Shankar	452	1559	776	783	465.9
32	Pipariya					
33	Sukdighat	295	1207	606	601	438.2
34	Tekadighat	409	1594	768	826	646.9
35	Tumsar	201	766	379	387	213.6

Table 7.2 Population data of study area in parts of Khairlanji, Tirodi and Lalbarra blocks

7.3.3 Ground water uses [e.g. irrigation (irrigation method, number of watering) water supply etc.] Groundwater plays secondary role in irrigation in the study area. The main crop is kharif uses supportive irrigation largely through canals of minor irrigation projects. Mine out pits locally also support the crop water requirement. Dug well fitted with electrical pumps are used to support kharif and rabi crops in the area. The unit draft of dug wells varies from 0.0027 to 0.036 mcm/ year. Mine discharge is being used for horticulture within core and buffer zone.

7.3.4 Improvement / decline in agricultural yield in last 5 years and likely impact after NOC

The average agriculture yield has not changed in last 5 year. The area is of hard rock terrain and the aquifer is quartz mica schist having radius of influence less than 500m as observed the mine core area. So, no likely negative impact of NOC is inferred. Rather LULC shows increase of water body area may provide additional irrigation source

7.3.5 Impact of existing project on local communities [based on local interactions (interactions must be with stakeholders like fishermen community, farmers etc.]

M/s D.P. Rai, Nagpur, is a partnership firm registered under Indian Partnership Act, 1932. Miragpur Manganese mine is engaged in the mining activities since decades. Miragpur Manganese mine is located in Miragpur village, Tehsil Khairlanji, District Balaghat, Madhya Pradesh. It extracts Mn by both underground. The industry has provided employment to the region. The groundwater withdrawal of maximum 8KLD has not created any adverse impact on the groundwater regime of the area. The average water level in study area in pre monsoon period is 5 to 10 m and 2.5 to 6 m during monsoon period. The biggest advantage of the study area is that a seasonal river called Bawanthadi flow in monsoon period of July to October that protects the area from any adverse impact on groundwater. Further the Miragpur Mn mine has taken up the rainwater harvesting and artificial recharge structure in the lease area. LULC data shows marginal decline in cultivated land in the 10km radius. However, as a whole no complain is observed.

8. Proposed measures for disposal of wastewater by mine drawing saline

water.

The water in the study area including mine discharge is fresh and the TDS is ranges between 150 and 1900 ppm in general so disposal of saline water not applicable.

9.0 Water Conservation

Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted. - Brief write up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project. - Details of water conservation measures to be adopted to reduce/ save the ground water. - Total water balance chart showing the usage of water for various processes.

The entire mine discharge (8KLD) is consumed for various mine operation/dust suppression/ plantation-horticultural use (Table 9.1). The mine discharge except high suspended particle is fresh. No sewage treatment plant /effluent treatment plan is in operation, or it is required for mine discharge.

Water conservations can be proposed for enhanced by including efficient measures of water use for mining and domestic consumption, effective reuse and recycles of water and treated water, adoption of appropriate rainwater harvesting and artificial recharge methods. It is therefore following sub topics are incorporated in this chapter.

9.1 Water use and water balance

9.2 RWH and Artificial Recharge

9.1 Water use and water balance

Miragpur Manganese mine is engaged in the mining activities since decades. Water is being used for dust suppression, greenbelt, domestic drilling and sand stowing purposes shown in the table no 3.1

9.2. Rainwater Harvesting & Artificial recharge:

Miragpur mine having an area of 24.288ha & 4.339 ha and land use is discussed in chapter 1.4 and table 1.1. The mine has taken up concentrated effort conserve each drop of rain water that the campus receives annually. Storm water garland drain has been constructed all along the mining area, office and staff quarter. A mine pit is also constructed along the mine for collection of mine discharge water and rainwater. The mine pit is having an area of 0.14 ha (1400m²) and depth of 3m.The mine pit having total storage capacity is 0.42 ha (4200m²). The collected water is again used in agriculture purposes of the surrounding areas. The run-off co-efficient has been taken 85% here. The recharge structures are shown below

Recharge Water= Area x normal rain fall x runoff coefficient

Table9.1 Water utilization in Miragpur mine (Area = 24.288 ha)				Table9.1a.Water utilization in Miragpur mine(Area = 4.339 ha)					
Sr.no	Purposes	Environmental		Sr.no	Purposes	nental			
		Clearance (68KLD)				Clearance (4 KLD)			
		Actual	Proposed			Actual	Proposed		
		Discharge	(KLD)			Discharge	(KLD)		
1	Dust		10	1	Dust		1		
	suppression				suppression				
2	Green belt	8 KLD	10	2	Green belt	0 KLD	1		
3	Domestic		6	3	Domestic		1		
4	Drilling		10 (Utilized)	4	Drilling		1		
5	Sand Stowing		20		Total		4		
Total			56						

Q= 4200 x 1.471 x 0.5 = 3089.1 m³

Fig 9.2 Design of proposed rooftop rain water harvesting structure

Table 9.2 Ponds and water bodies of study area									
S. N.	Location	Latitude	Longitude	Elevation	EC (μS)	рН	TDS (ppt)	DO (mg/l)	Water body
1	Pandharwani	21.63169	79.840268	364.51	540	8.1	120	6.2	Pit Mine
2	Goorabodi	21.65752	79.870229	343	580	8.1	250	9.4	Pond
3	Yerwaghat	21.65932	79.870783	335.56	950	7.3	320	5.88	Pond
4	Gorra Bodhi	21.66741	79.89621	337.4	780	8.2	280	4.8	Pond
5	Chikhla	21.68219	79.908152	343.59	980	8.2	320	6.2	Pond
6	Nandi Gaon	21.68292	79.814956	342.53	850	8.1	320	10.34	Pond
7	Mohogaon	21.68023	79.8335	334.1	790	8.5	335	6.46	Pond
8	Sundergaon	21.68946	79.846363	320.15	790	8.1	250	6.9	Pond
9	Khoka	21.71033	79.801737	346.83	450	8.4	310	5.9	Pond
10	Tirodi	21.68648	79.727579	358.18	440	7.3	160	2.7	MOIL Reservoir
11	SakuntalaKaus al Mine	21.63351	79.806412	328.59	610	8.1	310	4.79	Mine Pit
12	Churiya Par	21.5827	79.835526	280.27	640	8.3	220	4.93	Pond
13	HirapurReservi our	21.56538	79.779562	299.59	550	8.1	160	6.1	Reservoir
14	Fulchur	21.56236	79.871388	294.63	910	8.4	350	5.77	Pond
15	Miragpur mine	21.63247	79.832276	344.78	630	8.1	320	5.48	Recharge pit
16	Pandharwani Mine	21.62528	79.84262	360.09	450	8.3	150	6.9	Recharge structure

9.3. Monitoring, Measurement and Capacity building

Monitoring and measurements of several parameters are part of water conservation strategy towards the motive of efficient management of water. The withdrawal of groundwater is regularly monitored and measured from the existing dug well. The water level is found at 5-10 m bgl in pre-monsoonal period, which varies from 2.5-6 m bgl in the monsoonal period. The Miragpur mine conducts regular capacity building of its maintenance staff that monitors and measures and keeping record of various data related to water use and water conservation. The workers have been trained for keeping record and onward submission of data as per the requirement.

For monitoring of groundwater level in the area of Miragpur mine, Balaghat as per the guideline of CGWA, a piezometer has to be constructed at the area. The installation of piezometer is proposed exclusively for monitoring of groundwater level deploying automatic water level recorder with telemetric arrangement of data transmission.

Proposed Roof top rainwater harvesting structure

A roof top rainwater harvesting is proposed using standard deign as given below for mine office and associated building at the mine core zone by drilling of 30m deep 6'' dia bore well (**Fig 9.2**) in addition to existing recharge structure (**Fig 9.1**).

10. Any other details pertaining to the project

Manganese ore-Manganese ore horizon comprising of mostly manganese ore and manganiferous quartzite of Mansar Formation. The manganese ore is massive in nature containing mainly psilomelane. Mn ore band, running from (N200W to S200E) direction with an average thickness of ore is 8 (Eight) meters. Dip of the ore body is approx. 250 towards (SW).

Annexure-1 DATASET PANDHARWANIAREA, BALAGHAT											
S. N.	Location	Latitude	Longitude	Elevat ion	EC (mS)	рН	TDS (ppt)	Wat er Leve	Dia mete r(m)	DO (mg/l)	Type of water body
1	Pandharwani	21.631688	79.840268	364.51	540	8.1	120			6.2	Pit Mine
2	Miragpur	21.635695	79.838438	363.08	1700	6.8	860			6.54	Hand Pump
3	Miragpur	21.637156	79.837283	355.2	1690	7.2	850				Hand Pump
4	Miragpur	21.639436	79.840974	349.52	1420	7.5	230			2.38	Hand Pump
5	Sukdighat	21.648613	79.848755	342.09	1560	7.2	650	7	2.7	4.53	Dug well
6	Sukdighat	21.648322	79.850303	351.71	1830	7.2	920			2.72	Hand Pump
7	Sukdighat	21.648242	79.851071	353.48	2550	7.3	1230				Dug well
8	Sukdighat	21.650272	79.852384	346.06	2100	7.1	1000			2.4	Hand Pump
9	Sukdighat	21.650272	79.852384	346.06	1990	7.8	1050	6.7	2.5		Dug well
10	Goorabodi	21.657518	79.870229	343.65	1105	7.5	220			2.5	Hand Pump
11	Goorabodi	21.657518	79.870229	343	580	8.1	250			9.4	Pond
12	Goorabodi	21.657518	79.870229	343.56	1250	7.2	300			3.05	Hand Pump
13	Yerwaghat	21.65932	79.870783	335.56	950	7.3	320			5.88	Pond
14	Goorabodi	21.66087	79.870203	353.74	740	7.1	370				Hand Pump
15	Salibardi	21.671405	79.877707	336.32	680	6.5	150				Hand Pump
16	Salibardi	21.669789	79.878459	335.46	650	7	250				Hand Pump
17	Gorra Bodhi	21.667408	79.89621	337.4	780	8.2	280	Mine	Khaida	4.8	Pond
59 18	Gorra Bodhi	21.665994	79.895665	331.16	680	7.4	320	4.8	2	4.2	Dug well
19	Chikhla	21.66357	79.895535	333.95	1220	7.5	620	6	2.8	2.05	Dug well
20	Chikhla	21.684507	79.905157	328.48	1450	7.2	720				Hand
	1										Pump
----	-------------------	------------	------------	--------	------	-----	------	-----	-----	-------	--------------
21	Chikhla	21.682636	79.906358	332.58	1910	6.9	960	8	2	3.61	Dug well
22	Chikhla	21.682192	79.908152	343.59	980	8.2	320			6.2	Pond
		21.682192	79.908152	343.59	530	7.8	260				Hand
23	Chikhla										Pump
24	Miragpur	21.638487	79.8347	353.81	650	7.3	320				Pump
		21 641404	79 824406	343 13	1780	64	890				Hand
25	Sabargaon	21.041404		545.15	1,00	0.4	050				Pump
26	Sabargaon	21.642618	79.823377	342.44	3800	6.8	1900	6.5	2	2.6	Dug well
27	Sabargaon	21.644069	79.823462	340.76	2960	6.9	1480				Hand Pump
	Paraswadagh	24 6 40002	70.02005.4	220 50	660	7 5	220				Hand
28	at	21.649093	79.820654	328.59	660	7.5	320				Pump
29	Paraswadagh at	21.659513	79.807917	338.8	1005	7.3	520	7	2.5	7.2	Dug well
30	Paraswadagh at	21.660558	79.80533	351.76	910	7.8	450				Hand Pump
	Paraswadagh	21 664135	79 801919	340 53	2680	71	1340				Hand
31	at	21.004155	75.001515	540.55	2000	/.1	1340				Pump
22	Paraswadagh	21.66312	79.802876	343.89	3630	6.8	1820				Hand
52	at										Hand
33	Nandi Gaon	21.684963	79.806272	339.63	600	7.7	300				Pump
		21 684272	79 810401	339 84	1920	69	970				Hand
34	Nandi Gaon	21.004272	75.010401	555.04	1520	0.5	570				Pump
35	Nandi Gaon	21.682917	79.814956	342.53	850	8.1	320			10.34	Pond
36	Mohogaon	21.679234	79.823017	339.12	530	7.7	260				Pump
	0	21 679092	70 025121	246 41	1260	7 2	600				Hand
37	Mohogaon	21.078985	79.023131	540.41	1300	7.2	090				Pump
38	Mohogaon	21.68023	79.8335	334.1	790	8.5	335			6.46	Pond
20	Sundergaon	21.68713	79.839619	326.1	720	7.3	360				Hand
	Sundergaon										Hand
40	Sundergaon	21.689001	79.840266	326.3	2640	6.7	1330				Pump
		21 685458	79 832651	333 14	890	73	440				Hand
41	Sundergaon	21.000450	75.052051	000.17		7.5					Pump
42	Sundergaon	21.689457	79.846363	320.15	790	8.1	250			6.9	Pond
43	Nawegaon	21.704839	79.848695	333.17	1590	7.2	790				Pump
		21 70006	70 865628	222.46	1720	7 2	860				Hand
44	Tumsar	21.70990	19.0000000	552.40	1/20	1.2	000				Pump
AE	Tumcar	21.710944	79.867237	329.69	1390	7.3	690				Hand
45	ıunsal										Hand
46	Dudhara	21.706201	79.884752	316.42	700	7.2	340				Pump

Hydrogeological Investigation and Impact Assessment Report on Miragpur Mine, Khairlangi Balaghat

1	1	1		1	I	1	l			1	Hand
47	Dudhara	21.704471	79.885074	328.17	760	7.3	380				Pump
	Duunara										Hand
48	Dudhara	21.696104	79.889369	314.15	720	7.6	240				Pump
-			70 000 4 79	221.07	1200	7 4	C 10				Hand
49	Jamkhari	21.095575	79.900478	321.87	1280	7.4	640				Pump
		21 694672	79 901208	319 15	1020	74	390				Hand
50	Jamkhari	21.054072	75.501200	515.15	1020	7.4	550				Pump
51	Gudhrughat	21.64652	79.834762	340.56	580	7.9	280	4.2	1.5	5.3	Dug well
50	D : 1	21.691179	79.828772	334.89	1020	7.4	540				Hand
52	Birsula	21 (04201	70 027105	251 11	1000		500	4 5	2		Pump
53	Birsula	21.694301	79.827105	351.11	1080	7.7	260	4.5 E	2		Dug well
54	SILGKIIUI	21.717001	79.810555	541.05	540	7.4	200	5	Z		Dug well Hand
55	Sitakhor	21.719929	79.81962	340.24	680	7.3	340				Pump
56	Khoka	21.705623	79.812121	347.08	820	7.7	310	1.45			Borewell
57	Khoka	21.710329	79.801737	346.83	450	8.4	310			5.9	Pond
		24 744 607	70 706 400	240.47	1010	7.0	240				Hand
58	Katedara	21.711607	79.796432	340.47	1040	1.2	340				Pump
59	Katedara	21.711856	79.792357	342.87	880	7.5	440	4	1.5		Dug well
		21 697268	79 770729	352 42	1430	71	740				Hand
60	Bothwa	21.037200	, 5., , 6, 25	552.12	1100	<i>,.</i>	/ 10				Pump
											MOIL
C1	Tiredi	21.686482	/9./2/5/9	358.18	440	7.3	160			2.7	Reservio
61	Tirodi										Ur Hand
62	Tirodi	21.685706	79.727475	334.49	840	7.4	320				Pump
63	Tirodi	21.686257	79,739922	332.9	720	7.1	310	4.5	2		Dug well
64	Bamani	21.614417	79.736391	306.33	820	7.1	444	3.5	2		Dug well
		21 (10070	70 744242	200.00	1000	_					Hand
65	Bamani	21.610979	79.741213	290.99	1600	/	800				Pump
66	Bonkatta	21.602868	79.753879	286.6	910	7.1	440	6	1.4		Dug well
		21,609446	79,758254	295.86	1250	6.9	620				Hand
67	Bonkatta	21.003 110	, 51, 5625 1	233.00	1250	0.5	020				Pump
		21.641741	79.780165	310.59	740	6.9	220				Hand
68	Garragussai		70 776909	201.69	1111	67	560	4.2	2.1		Pump
- 69 - 70	Garragussai	21.645568	79.776808	301.68	1720	0./	560	4.3	2.1		Dug well
70	Garragussar	21.045040	79.770978	500.15	1720	1.2	900	5.1	Z		Dug well Hand
71	Sadabodi	21.644859	79.760747	305.02	1410	7.2	710				Pumn
72	Sadabodi	21.643897	79,763553	309.29	1360	7.4	680	4.4	1.5		Dug well
73	Garragussai	21.642687	79.779196	307.21	710	8	190		1.0		Dug well
	SakuntalaKau		70.000440	220 50			24.0			4 70	
74	sal Mine	21.633512	/9.806412	328.59	610	8.1	310			4.79	Mine Pit
		21 621000	70 910027	226 75	EEO	7 5	220				Hand
75	Hatoda	21.021088	13.010021	330.75	220	7.5	220				Pump
76	Ranimohgaon	21.622631	79.83492	329.12	2210	7.2	1005				Hand

Hydrogeological Investigation and Impact Assessment Report on Miragpur Mine, Khairlangi Balaghat

				l							Pump
77	Ranimohgaon	21.61919	79.834619	329.81	1050	7.5	510	6	2	4.03	Dug well
		21.61232	79.837064	337.82	990	7.2	450				Hand
78	Pandarwani										Pump
79	Pandarwani	21.61013	79.842064	341.23	880	7.2	380				Hand
75	r andar warn										Hand
80	Pind k Par	21.594223	79.856797	302.82	1050	7.3	460				Pump
		21 58805	79 848991	304 45	630	74	230				Hand
81	Pind k Par	21.50005	75.010551		000		200				Pump
82	Churiya Par	21.582704	/9.835526	280.27	640	8.3	220			4.93	Pond
83	Churiva Par	21.582679	79.834056	285.04	1960	7.5	980				Pump
84	Churiya Par	21.579936	79.830656	296.62	1050	7.5	490	4.5	1.5		Dug well
		21 568802	70 820107	270 78	850	76	120				Hand
85	Chhatera	21.508805	79.820107	275.78	830	7.0	430				Pump
0.0	Chhatana	21.57065	79.816498	275.29	690	7.3	290				Hand
86	Chhatera										Pump
87	Pulputta	21.581237	79.805994	280	888	7.3	340				Pump
		24 502270	70 705 602	202.07	1200	7.0	640				Hand
88	Pulputta	21.593379	/9./95693	283.87	1280	7.8	640				Pump
		21.6047	79.770202	293.23	680	7.3	320				Hand
89	Hardoli										Pump
90	viour	21.565377	79.779562	299.59	550	8.1	160				Reservoir
	Kawlewada (Near	24 500422	70.004445	202.40		7.2	200	6	4.5		D
91	Bawanthadhi river)	21.566132	79.804115	283.19	830	7.3	360	6	1.5		Dug well
02	Kawlowada	21.565443	79.806668	284.96	740	7.8	370				Hand
92	Rawlewada										Hand
93	Ganodh	21.556435	79.821225	280.44	1160	7.2	580				Pump
		21 554654	79 8281/19	272 35	1580	7.3	800				Hand
94	Tejutekari	21.554054	75.020145	272.55	1500	3	000				Pump
05	Shankar	21.547736	79.846168	276	2000	7.3	1000				Hand
95	Рірапуа										Hand
96	Fulchur	21.561858	79.871117	293.72	2580	7.3	1290				Pump
97	Fulchur	21.562363	79.871388	294.63	910	8.4	350			5.77	Pond
98	Katori	21.5756	79.896254	279.11	1870	7.4	940	4.2	1.5		Dug well
	Bhandarbodh	21.588696	79.901293	277.19	890	7.5	320				Hand
99	İ										Pump
100	Murjhad	21.627167	79.935067	285.51	1020	7.4	250				Hand Pump
101	Jhariya tola	21.646052	79.94073	301.22	890	7.4	430				Hand

Hydrogeological Investigation and Impact Assessment Report on Miragpur Mine, Khairlangi Balaghat

1											Pump
	Miragpur	21 622/17	70 022276	211 70	620	0 1	220			E 10	Recharge
102	mine	21.03247	79.032270	544.70	050	0.1	520			5.40	pit
	Miragpur	21 622020	70 02272	249.07	710	7.6	250				Hand
103	Handpump	21.033039	/9.833/3	348.97	/10	7.0	350				Pump
	Pandharwani	21 (2027)	70.044225	244.4	200	7 4	150	F	2	2.0	Dugual
104	Mine	21.628271	79.844225	344.4	300	7.4	150	5	3	3.8	Dug well
	Pandharwani	21 (2027)	70.044225	244.4	600	7 0	240			2.44	Hand
105	Mine	21.628271	79.844225	344.4	680	7.3	340			2.44	Pump
	Pandharwani	21 625276	70.04262	200.00	450	0.2	150			6.0	Recharge
106	Mine	21.625276	79.84262	360.09	450	8.3	150			6.9	structure

				Buffe	r Zone					
S. N.	Location	Latitude	Longitude	Elevatio n	EC (mS)	рН	TDS (ppt)	Water Level (m)	DO (mg/l)	Type of water body
1	Goorabodi	21.657518	79.870229	343.65	1105	7.5	220		2.5	Hand Pump
2	Goorabodi	21.657518	79.870229	343.56	1250	7.2	300		3.05	Hand Pump
3	Goorabodi	21.66087	79.870203	353.74	740	7.1	370			Hand Pump
4	Salibardi	21.671405	79.877707	336.32	680	6.5	150			Hand Pump
5	Salibardi	21.669789	79.878459	335.40	1450	7 2	250			Hand Pump
7	Chikhla	21.004307	79.903137	2/2 50	520	7.2	720			Hand Pump
/ 0	Paraswadaghat	21.002192	79.908132	228 50	660	7.0	200			Hand Pump
9	Paraswadaghat	21.049093	79.820034	351 76	910	7.5	450			Hand Pump
10	Paraswadaghat	21.664135	79.801919	3/0 53	2680	7.0	13/0			Hand Pump
10	Paraswadaghat	21.66312	79.802876	343.89	3630	6.8	1820			Hand Pump
12	Nandi Gaon	21 684963	79.806272	339.63	600	7.7	300			Hand Pump
13	Nandi Gaon	21.684272	79.810401	339.84	1920	6.9	970			Hand Pump
14	Mohogaon	21.679234	79.823017	339.12	530	7.7	260			Hand Pump
15	Mohogaon	21.678983	79.825131	346.41	1360	7.2	690			Hand Pump
16	Sundergaon	21.68713	79.839619	326.1	720	7.3	360			Hand Pump
17	Sundergaon	21.689001	79.840266	326.3	2640	6.7	1330			Hand Pump
18	Sundergaon	21.685458	79.832651	333.14	890	7.3	440			Hand Pump
19	Nawegaon	21.704839	79.848695	333.17	1590	7.2	790			Hand Pump
20	Tumsar	21.70996	79.865638	332.46	1730	7.2	860			Hand Pump
21	Tumsar	21.710944	79.867237	329.69	1390	7.3	690			Hand Pump
22	Dudhara	21.706201	79.884752	316.42	700	7.2	340			Hand Pump
23	Dudhara	21.704471	79.885074	328.17	760	7.3	380			Hand Pump
24	Dudhara	21.696104	79.889369	314.15	720	7.6	240			Hand Pump
25	Jamkhari	21.695575	79.900478	321.87	1280	7.4	640			Hand Pump
26	Jamkhari	21.694672	79.901208	319.15	1020	7.4	390			Hand Pump
27	Birsula	21.691179	79.828772	334.89	1020	7.4	540			Hand Pump
28	Sitakhor	21.719929	79.81962	340.24	680	7.3	340			Hand Pump
29	Khoka	21.705623	79.812121	347.08	820	7.7	310	145		Borewell
30	Katedara	21.711607	79.796432	340.47	1040	7.2	340			Hand Pump
31	Bothwa	21.697268	79.770729	352.42	1430	7.1	740			Hand Pump
32	Tirodi	21.685706	79.727475	334.49	840	7.4	320			Hand Pump
33	Bamani	21.610979	79.741213	290.99	1600	7	800			Hand Pump
34	Bonkatta	21.609446	79.758254	295.86	1250	6.9	620			Hand Pump
35	Garragussai	21.641741	79.780165	310.59	740	6.9	220			Hand Pump
36	Sadabodi	21.644859	79.760747	305.02	1410	7.2	710			Hand Pump
37	Hatoda	21.631088	79.810027	336.75	550	7.5	220			Hand Pump
38	Pind k Par	21.594223	79.856797	302.82	1050	7.3	460			Hand Pump
39	Pind k Par	21.58805	79.848991	304.45	630	7.4	230			Hand Pump
40	Churiya Par	21.582679	79.834056	285.04	1960	7.5	980			Hand Pump
41	Chhatera	21.568803	/9.82010/	2/9./8	850	7.6	430			Hand Pump
42	Chnatera	21.57065	79.816498	275.29	690	7.3	290			Hand Pump
43	Pulputta	21.581237	79.805994	280	1280	7.3	340			Hand Pump
44 15	r uiputta Hardoli	21.5933/9	79.795693	203.8/ 202.22	1290	7.ð	220	+	-	Hand Pump
45 46	Kawlowada	21.0047	70 006000	293.23	740	7.3	320			Hand Pump
40	Ganodh	21.303443	79.000008	204.90	1160	7.8	520			Hand Pump
48	Tejutekari	21.550455	79 8781/0	200.44	1580	7 22	800			Hand Pump
4 0 Д0	Shankar Pinariya	21.334034	79 8/6169	272.33	2000	7.35	1000			Hand Pump
50	Fulchur	21.547730	79 871117	270	2500	7.3	1200			Hand Pump
51	Bhandarbodhi	21.588696	79.901293	277 19	890	7.5	320			Hand Pump
52	Murihad	21,627167	79,935067	285.51	1020	7.4	250	t	1	Hand Pump
53	Jhariva tola	21.646052	79,94073	301.22	890	7.4	430			Hand Pump
				CORE	ZONE					
1	Ranimohgaon	21.622631	79.83492	329.12	2210	7.2	1005			Hand Pump
2	Miragpur Handpump	21.633039	79.83373	348.97	710	7.6	350		İ.	Hand Pump
3	Pandharwani Mine	21.628271	79.844225	344.4	680	7.3	340	1	2.44	Hand Pump
4	Miragpur	21.639436	79.840974	349.52	1420	7.5	230		2.38	Hand Pump
5	Miragpur	21.635695	79.838438	363.08	1700	6.8	860		6.54	Hand Pump
6	Miragpur	21.637156	79.837283	355.2	1690	7.2	850			Hand Pump
7	Miragpur	21.638487	79.8347	353.81	650	7.3	320			Hand Pump
8	Pandarwani	21.61232	79.837064	337.82	990	7.2	450			Hand Pump
	Pandarwani	21.61013	79.842064	341.23	880	7.2	380			Hand Pump
9	. and a man						000	1	2 72	
9 10	Sukdighat	21.648322	79.850303	351.71	1830	7.2	920		2.72	Hand Pump
9 10 11	Sukdighat Sukdighat	21.648322 21.650272	79.850303 79.852384	351.71 346.06	1830 2100	7.2	920 1000		2.72	Hand Pump Hand Pump

8. Impact assessment of underground mining of Manganese on Ground Water in and around Pandarwani, MP-

Click to view

MANAV RACHNA INTERNATIONAL INSTITUTE OF RESEACH AND STUDIES, FARIDABAD

March, 2022 By MRCAWTM

Comprehensive Report on: Groundwater Condition in both core and buffer zoneof Pendharwani Manganese Mine, Khairlangi Block, Balaghat District,Madhya Pradesh

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

hp

M/s D P Rai, Nanhka,10 East High Court Road, Ramdaspet, Nagpur- 440010 Maharashtra, Ph. No 7122522724, Email id: dprai.mines@gmail.com

Comprehensive Report on: Groundwater Condition in both core and buffer zoneof Pendharwani Manganese Mine, Khairlanji Block, Balaghat District,Madhya Pradesh

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

M/s D P Rai,Nanhka,10East High Court Road, Ramdaspet,Nagpur-440010 Maharashtra, Ph. No 7122522724, Email id: <u>dprai.mines@gmail.com</u> By MRCAWTM - March 2022

Executive summary

An Underground Mine of Manganese Ore of M/s D P Raiis located at coordinate 79°50'38.90"E, 21°37'41.42"Nof village Pandharwani, Balaghat district Madhya Predesh adjacent to the State Maharastra boarder. The mine was established in March 2000.The mine was previously developed as an open cast mine and later approval were obtained for underground mining for ore extraction since July 2018.The present study is made for obtaining and NOC from CGWA for extraction of maximum 41KLD groundwater during mining operation as per the approved mine plan. The mine discharge will remain below 100 KLD during all future expansion of mining operation during next 5 -10 years. The present report is based on the hydrogeological investigation made within core zone and its 10km radius buffer zone for assessment of impact of dewatering of groundwater by the mine and will be submitted to CGWA for obtaining renewal of NOC.

The study area falls under Wanganga river subbasin of Godavari basin and comprises of parts of Khairlangi Block of MP and Bhandara block of Maharastra both falls under safe blocks as per the report on Dynamic Groundwater Resource of India, published by CGWB in 2019-20. The study area is having largely one geological formation, Mansar Group of rocks of Proterozoic quartzite mica schist in the area. These are constituting hard rock aquifer of phreatic nature. The Thickness of aquifer is about 12-17m.The 14.9ha mine lease area is located near water divide and having radiating flow direction, but no river/ stream generates from this area. The av annual groundwater level in the core zone remain 6m bgl in comparison to 5m level of buffer zone.Groundwater quality is fresh and potable in both core and buffer zone area and TDS remains below 1900 ppm varies from 150 to 1900 ppm in the study area.

As per the approved mine plan the dewatering of groundwater maximum 41KLD was obtained but the quantum of water generates as mine discharge remain largely below this limit around 30 KLD to 35KLD ingeneral. The water generated during miningprocess is containing heavy silt load. Thus, three step de-siltation process is maintained before the entire water isreused in maintaining the green belt/horticulture and dust suppressionwithin the ML area and formining operation.Rainwater is harvested within the ML area through construction of water conservation pond. Roof top Rainwater harvesting structure is proposed as per building bylaw. The annual conservation through RWH&AR is about 0.75ham at present and will increase due to construction of rooftop RWH structure.

There is limited long term impact of groundwater dewatering by Pandharwani mine on the study area, Thus the study recommend NOC may be provided for next 5 yr with maximum 41 KLD extraction from groundwater system as mine discharge.

Acknowledgments and Certificate

Impact assessment and report preparation work as per the CGWA guideline was entrusted to MRCAWTM, Manav Rachna as accredited Groundwater Institution of CGWA by M/s D P Rai Nagpur is thankfully acknowledged.

Discussions with Mr Abhishek Rai, Chairman cum Managing Director, regarding the history of mine establishment and its process of miningof Mn ore has helped us in understanding the process well and plan our investigations according to scope of work is gratefully acknowledged. Help rendered by Shri Ram Narayan Tadhe, Manager & Mr Himanshu, Geologist in every stage of planning and execution, investigations in and around plant area and report preparation is thankfully acknowledged. He also provided all the available relevant data and records many of them are reproduced in this report and forms part of annexure section.

At mine level, during days of field investigation we have received warm welcome and all hospitality and requisite support from mine team. We thankfully acknowledge Sh Tarae Mines Manager and his team for their cooperation.

The report has been prepared by Ms Sheha Rai, Asstt Prof MRCAWTM and Sandeep Kumar RA MRCAWTM under the supervision of Prof (Dr) Arunangshu Mukherjee, Director MRCAWTM. Ms Alifia Ibkar, RA MRCAWTM helped Mr Sandeep Kumar in the field work and data collection.

It is to certify that MRCAWTM have investigated the area of Padharwani Mine Khairlangi Balagahat and based on actual data collected from field and literature survey done, has prepared the report as per the format of CGWA.

(Dr Arunangshu Mukherjee) Director, MRCAWTM

MR Centre for Advance Water Technology & Management Manav Rachna International Institute of Research & Studies

(Deemed to be University under section 3 of the UGC Act, 1956) Sector-43, Delhi – Surajkund Road, Aravali Hills, Faridabad - 121004

CONTENTS

Executive summary Acknowledgement Format of Report

SERIAL NO.	DESCRIPTION	PAGE NO.
1.	Introduction	1-8
	1.1 Objective	01
	1.2 Scope of study	02
	1.3 Project description	02
	1.4 Land use and land cover change in the study area	02
	1.5 Topography and drainage	06
2.	Groundwater Situations	9-28
	2.1 Geology and geomorphology	09
	2.2 Groundwater regime monitoring	12
	2.3 Long term groundwater trend	18
	2.4 Groundwater quality	21
3.	Details of bore well proposed to be constructed	29
4.	Geophysical survey of study area	29-42
	4.1 Geophysical studies in and around the mine area	29
5.	Approved mine plan	43-47
	5.1 Year wise mine plan including excavation depth, area and mine seepage	43
6.	Use of water obtained from mine dewatering	48
7.	Comprehensive assessment of the impact on the ground water regime	49-55
	7.1 Impact on surface water sources	49
	7.2 Impact on ground water sources	51
	7.3 Socio-economic aspects	53
8.	Proposed measures for disposal of wastewater by	56
	mine drawing saline water	
9.	Water conservation	57-61
	9.1 Water use & water balance	57
	9.2 Rainwater harvesting and Artificial recharge	57
	9.3 Monitoring, measurement & Capacity building	60
10.	Any other details pertaining to the project	62

Annexure

LIST OF TABLES

SERIAL NO.

DESCRIPTION

PAGE NO.

1.1	Land use break up of Pandharwani mine	04
1.2	LULC 2015 of study area	06
1.3	LULC 2021 of study area	06
2.1	Decadal rainfall in Balaghat district 2011-2020	11
2.2	District wise average annual rainfall and departure from Normal rainfall	12
2.3	Monthly rainfall of five years	12
2.4	Average monthly meteorological data of study area	12
2.5	Well inventory data of dug wells of core & buffer zone of Pandharwani mines	14
2.6	Block wise Dynamic groundwater resources of Khairlanji, MP & tumsar, Maharashtra	20
2.7	Analytical results of groundwater samples collected in Pandharwani mine	25
5.1	Details of earlier approved mining plans/scheme of mining	43
5.2	Details of stoping parameters	44
5.3	Actual and planned production of the mine	45
6.1	Water utilization in Pandharwani mine area	48
7.1	Crop production details of Balaghat district, MP in kharif & Rabi	53
7.2	Population data of study area in parts of Khairlanji, tirodi & Lalbarra blocks	54
9.1	Water utilization in Pandharwani mine area	58
9.2	Ponds & water bodies of study area	59

LIST OF FIGURES

SERIAL NO.	DESCRIPTION	PAGE NO.
1.1	Location map of study area and Pandharwani Mn Mine, Balaghat district, MP	03
1.2	Google image showing Pandharwani Mn Mine	04
1.3	Pie diagram of land use in Pandharwani mine	04
1.4	Map showing LULC of Pandharwani Mn Mine of 10km buffer zone (Jan 2015)	05
1.5	Map showing LULC of Pandharwani Mn Mine of 10km buffer zone (Jan 2022)	05
1.6	Digital elevation map in 10km buffer zone	07
1.7	Slope map of Pandharwani Mn mine in 10km buffer zone	08
1.8	Topography Map of 10km buffer zone	08
2.1	Dug well in the core zone of Pandharwani mine near crusher zone	13
2.2	Map showing study area divided by state boundary of Madhya Pradesh and Maharashtra.	15
2.3	Key map showing Tube well, Dug well and Handpump locations within the mine area of Pandharwani Mn Mine	16
2.4	DTW map of core & buffer zone of Pandharwani mine area	17
2.5	Groundwater contour map of Pandharwani mine area	18
2.6	Long term well hydrograph of wells of Balaghat district, Madhya Pradesh	19
2.7a	Long term pre monsoon groundwater trend in Balagaht district showing slightly increasing trend	19
2.7b	Long term postmonsoon groundwater level tends in Balagaht district	20
2.8	TDS map of study area	22
2.9	EC map of Study area Pandharwani mine	23
2.10	Sub-divisions of the diamond field	26
2.11	Distribution of water samples in Piper Trilinear Diagram	26
2.12	US Salinity diagram of Pre-Monsoon 2019 and Post Monsoon 2019, Balaghat	28
5.1	Approved Mine plan of Pandharwani Mine, Khairlanji, Balaghat	45
5.2	Manual banificiation of ore at Pandharwani Mine	46

5.3	Mining phase of underground mine at Padharwani	47
7.1	Dug well within mine lease area of the mine	49
7.2	Google elevation profile of study area around Pandharwani Mine from three directions	50
7.3	Groundwater contour map of Pandharwani mine area	51
7.4	Existing abandon open cast mine pit and water harvesting pit near Pandharwani mine (photo March 2022) and mine plan. Note the bottom of OC pit in plan and photo shown by arrow.	52
9.1	Existing rainwater harvesting pond cum storage tank in study area	58
9.2	Showing two settling ponds for collection of mine discharge	59
9.3	Recharge Structure in Study area	60
9.4	Agriculture land in the mine area	60
9.5	Design of proposed rooftop rain water harvesting structure	61

Comprehensive Report on Groundwater Condition in both core and buffer zone of Pendharwani Manganese Mine, Khairlangi Block, Balaghat District, Madhya Pradesh

[Report submitted for obtaining NOC form CGWA under Section 5 of the Environment (Protection) act, 1986 (29 of 1986) as per the new notification no 2941 of 24th Sept 2020]

Format for Impact Assessment Report as per the CGWA Norms

S No	Point of Report	Reply Enclosed
[1.]	Brief about the proposed project giving location details, coordinates, google/ toposheet maps, etc. demarcating the project area	Yes [Chapter-1]
1.1	Land Use Land Cover of the surrounding area, Percentage of LULC categories	Yes
1.2	Topography and drainage.	Yes
1.3	Details of wetlands [Highlight protected wetlands / Ramsar sites / NLCP lakes/ other important wetlands in terms of dependencies of local communities if any]	Yes
[2]	Ground water situation in and around the project area including water level and quality data and maps along with quality issues, if any. In case of mines, ground water conditions in both core and buffer zone should be described.	Yes [Chapter-2]
2.1	Brief geology of the area	Yes
2.2	Hydrogeology of the area	Yes
	2.2.1 Aquifer description [type, depth, storativity, permeability and porosity]	Yes
	2.2.2 Ground water flow and aquifer interaction [flow direction, Ground water – surface water connectivity]	Yes
	2.2.3 Ground water level trend analysis [pre – monsoon and post – monsoon] for 10 years	Yes
	2.2.4 Hydrograph of the water level for 10 years	Yes
	2.2.5 Predicted water level declines for affected aquifers	Not Required
	[Ground water modeling]	as per norms
	2.2.6 Ground water quality [pre - monsoon and post – monsoon]	Yes
	2.2.7 Water quality of nearby water bodies	Yes
[3.]	Details of the tubewells/ borewells proposed to be constructed. This includes the aquifer parameters, drilling depth, diameter, tentative lithological log, details of pump to be lowered, H.P. of pump, tentative discharge of tubewells/ borewells, etc. Locations to be marked on thesite plan/ map.	Yes [Chapter-2]
[4.]	Details of Geophysical studies carried out in and around the project area. Ground water resources computation of the block in which the project falls	Yes [Chapter-4]
	4.1 Results of Geophysical analysis [vertical electrical sounding (VES), horizontal profiling and imaging, transient electromagnetism method (TEM)] etc	Yes
[5.]	Approved Mine plan in case	Yes (Chapter-5)
	5.1 Year wise mine plan including excavation depth, area and mine seepage.	Yes
[6.]	Proposed usage of pumped water in case of infrastructure dewatering projects.	Yes (Chapter-6)
6.1	For drinking, irrigation etc.	Yes
6.2	Recharge	Yes
6.3	Runoff to stream	Yes

•

SNo	Point of Report	Reply Enclosed
6.5	Dust suppression, Green belt development etc	Yes
[7.]	Comprehensive assessment of the impact on the ground water regime in and around the project area highlighting the risks and proposed management strategies proposed to overcome any significant environmental issues.	Yes [Chapter-4]
7.1	Impact on surface water sources	Yes (Chapter – 7)
7.2	Impact on groundwater sources	Yes
	7.2.1. A description of the impacts on environmental values that have occurred, or are likely to occur, because of any past ground water abstraction.	Yes
	7.2.2 An assessment of the likely impacts on environment that will occur, or are likely to occur, because of the ground water abstraction for a five years period starting on the consultation day for the report; and over the projected life of the resource project area, affected area and radius of influence in case of dewatering	Yes
7.3	Socio-Economic Aspects:	Yes
	7.3.1 Settlements and population dynamics around project area	Yes
	7.3.2 Dependency on sources of water [surface or sub-surface]	Yes
	7.3.3 Ground water uses [e.g. irrigation (irrigation method, number of watering) water supply etc.]	Yes
	7.3.4 Improvement / decline in agricultural yield in last 5 years and likely impact after NOC	Yes
	7.3.5 Impact of proposed / existing project on local communities [based on local interactions (interactions must be with stakeholders like fishermen community,farmers etc.]	Yes
[8.]	Proposed measures for disposal of waste water by industries drawing saline water.	Not Applicable
[9.]	Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted.	Yes [Chapter-3]
	Brief write up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project.	Yes
	Details of water conservation measures to be adopted to reduce/ save the groundwater.	Yes
	- Total water balance chart showing the usage of water for various processes.	Yes
[10.]	Any other details pertaining to the project.	Annexure (s)

Report on:

Hydrogeological Investigation and Impact Assessment Report for Pandharwani Manganese Ore Mine Balaghat District, MP

1. Introduction

The report is prepared as per the format prescribed by the CGWA for impact assessment study of Mining, the Introductory chapter comprises the following subtitle for describing its

- 1.1 Objectives
- 1.2 Scope of the study
- 1.3 Project Description-Mine, product and location
- 1.4 Land Use Land Cover and percentage of LULC categories
- 1.5 Topography and drainage
- 1.6 Details of wetlands

1.1 Objective

The Central Government had constituted the Central Ground Water Board as Authority vide notification number S.O. 38 €, dated the 14th January,1997 to exercise powers under sub section (3) of section 3 of the Environment (Protection) act, 1986 (29 of 1986) for the purposes of regulation and control of Ground Water Management and Development. The Authority has been regulating ground water development and management by way of issuing 'No Objection Certificates' for ground water extraction to Industries or Infrastructure projects or Mining Projects etc., and framed and issued guidelines in this connection from time to time. The entire process of grant of No Objection Certificate (NOC) shall be online through a web based application system. The latest guideline issued by Gazette Notification no 2941 on 24th September 2020 supersedes all earlier guidelines issued by the Central Ground Water Authority (CGWA). CGWA vide email dated ²1st Nov 2020 and ¹3th Jan 2021 instructed the M/s D.P. Rai, Nagpur, Mahrashtra to submit Impact assessment report along with undertaking for processing their application for regularization of groundwater abstraction for mining. There by M/s D.P. Rai, Nagpur, Mahrashtra engaged the MRCAWTM, CGWA Accredited Groundwater Institution (Certificate No.-CGWA/RGI/025)vide work order dated 30th Dec 2021 to carry out the hydrogeological investigation along with impact assessment study incorporating socio-economic assessment study on groundwater regime due to withdrawal/ dewatering of groundwater by Pandharwani Manganese Ore Mine, Balaghat of M/s D.P. Rai, Nagpur, Mahrashtra as per the prescribed format of CGWA.

1.2 Scope of Study

The scope of study includes hydrological study around mine and providing certificated report along with providing guidance on techno-legal aspects and compliance for obtaining NOC for CGWA as per latest guidelines.Detailed hydrogeological investigations within core and buffer zones (10km radius study area) of **Pandharwani Manganese Ore Mine**, **Balaghat**leased toM/s D.P. Rai, Nagpur, Mahrashtra and assessment of impact of mining on groundwater regime in the study area which covers parts of Khairlanji block/tehsil, Balaghat district of Madhya Pradesh and some villages of Bhandra district, Maharashtra.As the mine is generating only 41m3/day discharge thus groundwater modeling is not required along with impact assessment report for this case as per the CGWA guideline.

1.3 Project description

M/s D.P. Rai, Nagpur, is a partnership firm registered under Indian Partnership Act, 1932. Pandharwani Manganese ore mine is engaged in the mining activities since decades.Presently mining is throughunderground method. The total lease area of Pandharwani Mine is 14.99 ha. and having approved mine plan (MP/Balaghat/Manganese/RMP83/17-28 4659 Jabalpur dated 26/04/2018) valid- from 2018-19 to 2022-23.The ore body exist between 225-209 MRL at an av. depth of 125m from surface. Ore body width ranges between 10-12m in general. However, in SW direction at 265 MRL and 250 MRL in ore drive, the width has increased to 20 m width over a strike length of 50m before it terminates and plunges. The explored strike length of ore body is 200m.The firm is well equipped with tools qualified personnel and required plans. The annual production of ore is 10000 Tons. Mn % in ore ranges between 23 and 36%.

Location

Pandharwani Manganese Ore Mine is located inPandharwani village, Tehsil Khairlanji, District Balaghat, Madhya Pradesh. Pandharwani village is situated in the south west portion in Balaghat district, Madhya Pradesh. The study area falls under survey of India toposheet no F44N14. Pandharwani mine is situated 50km from Balaghat Town and 25 km from Khairlanji tehsil headquarters and 130 km from Nagpur railway station. Mining lease area is surrounded by the agriculture land and small hillocks of weathered soil. Many shallow depths abounded open cast mines pits are present within the study area. The opening of Pandharwani underground mine is located at coordinate 21°37'41.8"N 79°50'39.2"E (**Fig1.1**). The lease area of underground mine is not located within 10km radius of National Park /Wild Life Sanctuary / Protected area and don't falls under Coastal Regulation Zone (CRZ).

1.4 Land use and Land cover (LULC) change in the study area:

The total lease area of the Pandharwani UG mine is 14.9 ha (14900 m²) having a perimeter of 1144m. The mine is situated in outer part of the Pandharwani village surrounded by hills and forest area. The land use of the mining area is given in **Table no 1.1** and the percentage has been represented through a pie diagram in **Fig 1.2**. The nearest village is Jatapur Khappa located 0.8 km away from Pandharwani mine. Around 40 villages are located under 10km radius zone of the study area. (Annexure-1).

Fig 1.1: Location map of study area and Pandharwani Mn Mine, Balaghat district, MP

Comparison of LULC during 2015 and 2021 within the 10 kms radius of mine area show marginal changes in agriculture use, forest cover, built up area, as shown in figs and tables -1.2 & 1.3, however area under water body has increased from 60 ha to 124 ha due to accumulation of water into someabandon mine pitsand due to construction of water conservation structures in the area.

Fig 1.2: Google image showing Pandharwani Mn Mine

	Table 1.1 LAND USE BREAK UP OF							
	PANDHAKW							
SI	Area Area Percenta							
No.	description	(m²)	%					
	Area under							
1	mining	49700	69.57					
2	Mine pit	3108	4.35					
	Infrastructure							
	(Office & staff							
3	quarter)	1950	2.72					
4	Green area	2362	3.30					
	Paved area and							
5	passage	10000	13.99					
6	Waste dump site	1463	2.04					
7	Mineral storage	2846	3.98					
	Total	71429	100					

Fig 1.4: Map showing LULC of Pandharwani Mn Mine of 10km buffer zone (Jan 2015)

Fig 1.5: Map showing LULC of Pandharwani Mn Mine of 10km buffer zone (Jan 2022)

Table 1.2 LULC 2015 of Study Area

Sr.no	LULC Type2021	Area (Ha)						
1	Water Body	123.58						
2	Build up Land	1329.71						
3	Agriculture land	18755.78						
4	Shrub land	2206.66						
5	Forest Land	252.86						
6	Barren Land	1058.79						
7	Hilly Terrain with Vegetation	7688.5						
Total A	Total Area (10km Buffer zone) 31415.88							

Table: 1.3 LULC 2021 of Study Area

Sr.no	LULC Type 2015	Area (Ha)						
1	Water Body	60						
2	Build up Land	419.75						
3	Agriculture land	19396.63						
4	Shrub land	1862.99						
5	Forest Land	310.08						
6	Barren Land	1171.76						
7	Hilly Terrain with Vegetation	8194.38						
Total A	Total Area (10km Buffer zone) 31415.59							

1.5 Topography and Drainage:

The Pandharwani mine belongs to Mansar Formation of Sausar Series. The Terrain is almost flat having some exposed rocks. The highest elevation is 466m amsl and lowest elevation is 267m amsl.The digital elevation model presented in Fig 1.6. The gradient of the study area has been measured by remote sensing data using elevation map in Fig 1.7. The western part and southern half of study area having southerly slope whereas the central (including mine area) and northeastern part having northeasterly slope. The area south of Bawanthadi river is having northerly slope.

Drainage:

There is no water body and Nallah in the lease area. At a distance of 8km NW direction a seasonal river called Bawanthadi flows in E-W direction. Bawanthadi is a tributary of river Wainganga of Godavari basin. Wainganga river entering Balaghat district from its Northwestern part from the Seoni district, creates the boundary between Sehoni and Balghat district and flowing south through

the lowlands, it enter the Bhandara district. The Rajiv Sagar (Bawanthadi) interstate irrigation project, between the states of Madhya Pradesh and Maharashtra, envisages construction of a dam across river Bawanthadi. It has been constructed near village Kudwa in Katangi Tehsil of Balaghat district, M.P. and village Sitekasa of Tumsar Tehsil of Bhandara district, Maharashtra.

Fig 1.6: Digital elevation map in 10km buffer zone

Fig 1.7: Slope map of Pandharwani Mn mine in 10km buffer zone

Fig 1.8: Topography Map of 10km buffer zone

2. Groundwater Situations

Large part of the study area belongs to Khairlanji block which is located in Southwestern part of Balaghat District Madhya Pradesh. Ground water is the main source of drinking as well as domestic purpose. However, the requirement of water in irrigation and agriculture is fulfilled mainly by river as well as rainwater. The rainwater also is the main source for recharge of groundwater of the area. The following major subtopics that are covered in this particular chapter are:

- 2.1 Geology and Geomorphology
- 2.2. Climate and Rainfall pattern
- 2.3 Groundwater regime monitoring
- 2.4 Long term groundwater trend
- 2.5 Groundwater resources
- 2.6 Groundwater quality

2.1. Geology and Geomorphology

Manganese deposit of Madhya Pradesh – Maharashtra belongs to Sausar Group of rocks, displayed in accurate shape band which runs over 200 km. from Ukwa in M.P. to Kachidhana via Tumsar-Bhandara& Nagpur dist. of Maharashtra. Mansar Formation of Sausar Group is folded and refolded and thrusted by many cycles of deformations. Sausar sequence is rested over rocks of Gneissic complex with unconformity. Dolomites, Limestone, Mica Schist, quartzite, Biotite Granulite are the rock types associated with this series. Mica Schist, quartz mica schist along with Manganese have been made exposed in mine area by previous opencast activities. Mica Schist is coarse to fine grain rock with fish skin luster.

Geological Formation in the Study area

- Alluvium Soil
- Mica Schist with Quartzite
- Manganese ore with Gondite
- Alluvium soil: On the basis of field study it has been observed that the lateritic soil is found with brown to red color. The average thickness of the soil is cover is 3m in study area.
- Mica Schist with Quartzite: It has been observed that the formation in the study area is trend in ENE-WSW and the trend of Manganese ore body is NNW-SSW. Mica Schist is coarse to fine grained with fish skin luster. Mica Schist is crenulated, filled with needles of stretched vitreous quartz. Quartz associated with schist is thick vitreous but crushed at places due to deformation.
- Manganese ore with Gondite: Manganese ore in Pandharwani mine belong to Mansar Formation.Manganese ore is dark steel grey with Braunite as principal mineral associated with other oxide and silicate. Thetrendof themanganeseore deposit is mostly NNE-SSW and the angle of dip is varying from about 75° to 80°.

The manganese deposit of the Balaghat district, M.P., founds as NNE-SSW to ENE-WSW trending conformable bands in the form of lenses of varying sizes, enclosed within the metasedimentary sequence of Sausar Group of rocks of Precambrian age (Banerjee, et. al. 2007). The Madhya Pradesh-Maharashtra manganese belt is the largest manganese ore deposits of India which are intensely deformed and metamorphosed varies from green schist facies to upper amphibolite facies with gradual increase in the grade of metamorphism from East to West The regionally metamorphosed syngenetic sedimentary bodies of manganese ores in the Sausar Group of Balaghat district, Madhya Pradesh exhibit a definite trend in the formation and transformation of manganese oxide phases with progressive metamorphism. A regional trend is clearly noticeable from the paragenesis of Ore minerals in the manganese ore bodies from different metamorphic zones. Braunite forms at a very low temperature, appearing in the chlorite zone of regional metamorphism, and it continues in stable form right up to the sillimanite zone. Bixbyite as a high temperature mineral appears first in biotite zone and also appears in the sillimanite and almandine zone in the Balaghat

FORMATION	LITHOLOGY
Bichua Formation	Dolomite, Marble, Calc silicate gneiss schist.
Junewani Formation	Metapelite (Mica Schist), Quartzite, granulite,
Charbali Farmatian	biotite-Gneiss (Heworked basement).
Charboll Formation	Quanzite, leidspathic Schists, Gheisses, Autoclastic Quanz, Congiomerate.
Mansar Formation	Metapelite (mica-schists and gneisses), graphitic Schists, Phyllite quartzite, major manganese deposits and gondite.
Lohangi Formation	Calc-Silicate Schists and gneisses, marble, Manganese deposits,
Sitasaongi Formation	Quartz mica Schists, Feldspathic Schists, mica gneiss, Quartzite, Conglomerate.
Tirodi Gneiss	Biotite gneiss, Amphibolite, Calc-Silicate Gneiss (Tirodi Gneiss), Granulites, Mica
	Feldspathic Schists.
	Inconformity
Older Metemorphice	Chernoolitta Orthognoipage and Cranita Pictita Cheipage, hernhlande Cheipage
Order Metamorphics	Gramockie, Ormogneisses and Granite Blotte Greisses, normblende Greisses,
	Amphibolites and calcgranulites

Stratigraphic succession of Sausar Group (Bandvopadhvay. et. al., 1995.)

Geomorphology: Morphologically the area having Alluvial plains, intermonnate valleys, denudational hills and peneplains. Natural levees can be seen in the bank of Bawanthadi river. Strems are showing dendritic pattern, drainage density is modarate.

Climate and Rainfall:

The mining area is situated in Khairlanji block of Balaghat district, but the study area covers the southwestern part of Balaghat district and northern part Tumsar block of Bhandara district in Maharashtra State, India. The nearest Meteorological station is at Satona (Hydromet Division, IMD), which is located around 60 kms from the study area. Therefore, the data collected from IMD Satna and from the state data of Madhya Pradesh and Maharashtra have been considered to discuss the climate and rainfall of the study area (**Table 2.1 to 2.4**)

Winds

The wind velocity is higher during the pre-monsoon period as compared to post monsoon period. The maximum wind velocity 7.7 km/hr observed during the month of June and minimum 3.9 km/hr during the month of December.

Temperature

The Climate of the district is sub- tropical or moderate characterized by a hot summer and general dryness except during the southwest monsoon season. The cold season usually begins from the month of December and continues to February. December is the coldest month with mean minimum temperature of around $8 \circ C$ The winter is followed by the summer season which starts from March and continues to the middle of June having mean daily maximum temperature of $43 \circ C$ in the month of May. The period from the middle of June to September is the southwest monsoon which is followed by the post monsoon or transition period in the months of October and November.

Humidity

The relative humidity is maximum during the southwest monsoon which ranges between 70-75%, it is comparatively drier in the rest of the year. The driest part of the year is the summer season, when relative humidity is less 34%. May is the driest month of the year. As per the geographical position, the study area is located in hot tropical, the daily maximum temperature ranging from 30° C to 40° C. Due to the high temperature, the loss of moisture through evaporation is considerably high. During monsoon period the net evaporation is less than the precipitation, resulting in surplus water which is lost either surface runoff or recharge of groundwater.

Rainfall

Rain fall is the major source of the water of the area is discussed. The area is characterized by semiarid type of climate, which is mainly having moderate dryness except during the monsoonal months. The normal annual rainfall of Balaghat district is 1471.6 mm. Balaghat district receives maximum rainfall during southwest monsoon period i.e. June to September and a very little rainfall during north-east monsoon (October to December). in the wake of thunderstorms and western disturbances. Thus, surplus water for ground water recharge is available only during the southwest monsoon period.

Tab	Table 2.1 Decadal Rainfall in Balaghat District (Source: WRIS online portal) 2011-2020											
Year	Actual Rainfall (mm)	Deviation (%)	Year	Actual Rainfall (mm)	Deviation (%)	Average Rainfall (mm)						
2011	1131.59	-1.69	2016	1055.89	-8.27							
2012	1067.65	-7.25	2017	908.02	-21.11							
2013	1481.32	28.68	2018	1036.58	-9.95	1151.14						
2014	1154.34	0.27	2019	1263.39	9.75							
2015	1018.4	-11.53	2020	1394.22	21.11							

Table 2.2 District wise average Annual Rainfall of and Departure(%) from Normal rainfall											
District	Normal rainfall (mm) 1980-2010	Average rainfall (mm) 2011- 2020	Actual rainfall (mm) 2021	Departure (%) in 2021 from Normal Rainfall	Departure (%) in 2021 from Average Rainfall						
Balaghat	1471.6	1151.14	1062.69	-27.7	-7.03						

	Table 2.3-Monthly rainfall of 5 years in mm																					
Year	Jan	uary	Febr	uary	Mai	ch	Ap	ril	Ma	ay	Jur	e	Jul	y	Aug	ust	Septer	nber	October	Nov	Dec	
	Rain	%	Rainfa	%	Rainf	%	Rain	%	Rainf	%	Rainfal	%	Rainfal	%	Rainfall	%	Rainfall	%	Rainfall			
	fall	Dep.	1	Dep.	all	Dep.	fall	Dep.	all	Dep.	I	Dep.	I .	Dep.		Dep.		Dep.				
2013	18.4	-37	5.8	-71	37.4	220	6.4	36	2.6	-52	124.1	0	800.6	155	276.3	-16	195.1	7	4.9			
2014	0		0	-100	34.2	192	24.2	415	25	363	53.8	-57	378.7	20	209.6	-36	50.2	-72	3.6			
2015	0		71	253	21.6	85	0.6	-67	1	-81	145.1	17	146.9	-53	176.4	-46	172.9	-5	0			
2016	0.9	-97	8.5	-58	0.3	-97	3	-36	7.7	43	205.5	65	206.9	-34	212.5	-35	101.1	-44	4.1			
2017	12.9	-59	0		1.4	-88	3.8	-19	14.5	169	25.8	-79	207.6	-34	192.5	-42	152	-16	220.4			
Vg.	6.44		17.06		18.98		7.6		10.2		110.9		348.14		213.46		139.26		46.6	12.6	1.76	9

Table 2.4 Average Monthly Meteorological Data of study area (source: IMD)

Month	Temperature		Rel. Hum	nidity (%)	Vapour Pr	essure	Mean	Average	Cloud Amount		
	(°	C)			(hpa)	Wind	Rainfall	(ok	tas)	
	Min.	Max.	Morning	Evening	Morning Eveni		Speed	(mm)	Morning	Evening	
						ng	(Km/hr)	(2012-16)			
January	4	29.2	60	48	10.15	10.1	4	6.44	1.2	1.3	
February	6.6	33.1	51	37	10.95	10.8	5.6	17.06	1	1	
March	11.4	38.6	41	27	11.36	10.5	5.8	18.98	1.1	1.2	
April	16.9	42.6	34	22	12.9	12.7	7.5	7.6	1.2	1.5	
May	22.3	45	45	26	18.6	14.9	7.6	10.16	1.3	1.4	
June	23.1	41.8	59	49	25.7	24.5	8.1	110.86	4	4.6	
July	22.8	37	79	71	28.9	29.8	7.9	348.14	5.8	5.8	
August	22.4	33.5	80	72	29.7	28.9	7.1	213.46	5.7	5.9	
September	21.6	33.8	79	71	27.9	27.8	6.9	139.26	4.3	5	
October	14.1	33.7	67	60	21.8	22.3	4.5	46.6	2.3	2.4	
November	8	31.8	56	51	16.3	14.1	3.3	12.6	1.3	0.9	
December	5	29.5	59	45	10.8	10.5	3.8	1.76	1	1	

2.2 Groundwater regime monitoring

The study area comprises 10km radius zone in Pandharwani Manganese mine that fall largely under Khairlanji block, Balaghat district, Madhya Pradesh and partlyin Tumsar Tehsil of Bhandara district, Maharashtra.Detailed hydrogeological study of both core zone and buffer zone of mine area is carried out. The study area having single aquifer formed in hard rock comprise Quartz Mica Schist.. Total groundwater extraction from the Pandharwani mine is 41KLD is through pump. Dug well are used for drinking and domestic purpose.

2.2.1 Detailed study of core and buffer zone

Major source of the water in the study area is south-west monsoon and very small contribution from north- east monsoon during winter. As per the field study it has been observed that in the study area groundwater is withdrawal from dug well (**Fig 2.1**) and hand pump. Most of dug wells in study area having depth 4 to 8 m ground water. It varies during summer between 5m to 10m and 2.5m to 6.0m in winter. It has been observed that the borewells are often 20 to 40m in depth. Ground water is lying in weathered part of hard rock aquifer. Hard rock's comprise in the study area is Sausar sequence rested over rocks of Gneissic complex with unconformity. Dolomites, Limestone, Mica Schist, quartzite, Biotite Granulite are the rock types associated with this series. The movement of the ground water in deeper rocks is controlled by the nature, size opening and continuity of joints & fracture present in them. Wells in hard rock generally yield 50 to 70 m3 /day of all the rock types. Schist, Phyllite and their variants form very poor aquifers yielding 10 to 30 m3 /day for heavy drawdown. Well inventory of study area in Pre Monsoon (Feb 2022) period showing water level varies within the range from 1.4 m to 8m bgl (**Table 2.5**).

Fig 2.1 Dug well in the core zone of Pandharwani mine near crusher zone

Table2.5: Well inventory data of Dug wells of Core and buffer zone of Pandharwani Mine	2
Lat & Long data are as per GPS reading, DO, EC, pH, and TDS measured on site using calibrated Hanna portable equipment during Feb 202	2)

S. N.	Village	Latitude	Longitude	Elevati on (m amsl)	Water Level (m)	Dia me ter (m)	Dept h (m)	DO (mg/l)	EC (μS)	рН	TDS (ppm)
Core	Zone of Mine										
1	Sukdighat	21.64861	79.848755	342.09	7	2.7	8.5	4.53	1560	7.2	650
2	Sukdighat	21.64824	79.851071	353.48					2550	7.3	1230
3	Sukdighat	21.65027	79.852384	346.06	6.7	2.5	8.75		1990	7.8	1050
4	Pandharwani Mine lease	21.62827	79.844225	344.4	5	3	9.25	3.8	300	7.4	150
5	Ranimohgaon	21.61919	79.834619	329.81	6	2	8.25	4.03	1050	7.5	510
6	Gudhrughat	21.64652	79.834762	340.56	4.2	1.5	8.50	5.3	580	7.9	280
7	Sabargaon	21.64262	79.823377	342.44	6.5	2	9.0	2.6	3800	6.8	1900
8	Paraswadaghat	21.65951	79.807917	338.8	7	2.5	9.9	7.2	1005	7.3	520
Buffe	r Zone of Mine			-	-	-				-	
9	Birsula	21.6943	79.827105	351.11	4.5	2	8.0		1080	7.7	560
10	Sitakhor	21.71768	79.816533	341.65	5	2	8.60		540	7.4	260
11	Katedara	21.71186	79.792357	342.87	4	1.5	7.55		880	7.5	440
12	Tirodi	21.68626	79.739922	332.9	4.5	2	8.0		720	7.1	310
13	Bamani	21.61442	79.736391	306.33	3.5	2	7.0		820	7.1	444
14	Bonkatta	21.60287	79.753879	286.6	6	1.4	8.25		910	7.1	440
15	Garragussai	21.64557	79.776808	301.68	4.3	2.1	7.85		1111	6.7	560
16	Garragussai	21.64505	79.770978	306.13	5.1	2	6.8		1720	7.2	900
17	Sadabodi	21.6439	79.763553	309.29	4.4	1.5	8.25		1360	7.4	680
18	Garragussai	21.64269	79.779196	307.21					710	8	190
19	Churiya Par	21.57994	79.830656	296.62	4.5	1.5	8.55		1050	7.5	490
20	Kawlewada (Near Bawanthadhi river)	21.56613	79.804115	283.19	6	1.5	8.8		830	7.3	360
21	Katori	21.5756	79.896254	279.11	4.2	1.5	7.90		1870	7.4	940
22	Gorra Bodhi	21.66599	79.895665	331.16	4.8	2	9.0	4.2	680	7.4	320
23	Chikhla	21.66357	79.895535	333.95	6	2.8	8.5	2.05	1220	7.5	620
24	Chikhla	21.68264	79.906358	332.58	8	2	9.5	3.61	1910	6.9	960

Fig 2.2: Map showing study area divided by state boundary of Madhya Pradesh and Maharashtra. Note the location of Pandharwani Mn Mine at center and position of other villages on google image along with prominent roads. Inventory of wells of these villages are carried out under groundwater regime monitoring.

Fig 2.3: Key map showing Tube well, Dug well and Handpump locations within the mine area (green color) of Pandharwani Mn Mine on google image and photo graph of measuring groundwater parameter.

Fig 2.4 DTW map of core and buffer zone of Padharwani Mine area

Groundwater Flow: The groundwater contour map generated using the intense monitoring in core and buffer zone of mining is depicted in **Fig 2.5**. The map showing clear cut development of groundwater dived running through the mine area. The GW flow direction largely coincides with the surface water flow direction as shown in fig 1.6. Thus mine is on groundwater divide and any dewatering from mine will not effects significantly the flow direction of groundwater of the area.

Fig 2.5: Groundwater contour map of Pandharwani mine area

INDEX – red line shows groundwater divide, arrows indicate groundwater flow direction, values indicate groundwater elevation (m amsl), dots indicate data point used for generation of gw contour, buffer zone is marked by 10 km radius circle. Note the mine position (green box) situated near gw divide

2.3Long term groundwater trend

The study area comprises 10km radius zone in Pandharwani Manganese mine that largely fall under Khairlanji block, Balaghat district, Madhya Pradesh and partly toTumsar Tehsil of Bhandara district, Maharashtra. The source of ground water such as dug well, hand pump and pond are used for domestic, irrigation and drinking in the core zone villages. Out of 23 observation location of dug well, it has been observed that the water level (Pre monsoon 2022) of more than 10 villages around the buffer zone and core zone area is varying from 4 to 8m bgl. Long term trend analysis of data obtained from CGWB shows no significant change-rise or fall as depicted in **Fig 2.6 and 2.7**.

Fig 2.6: Long term well hydrograph of wells of Balaghat district, Madhya Pradesh (source: WRIS online portal)

2.3.1 Dynamic Groundwater Resource of study area:

The groundwater resource as estimated by CGWB (2020) is presented in the table 2.6 for two blocks of MP and Maharashtra and are in safe category.

Fig 2.7b: Long term postmonsoon groundwater level tends in Balagaht district (Source: CGWB)

Sr no	State	District	Assessme nt Unit Name	Assess ment Unit Type	Rechar ge from Rainfall -MON	Recharge from Other Sources- MON	Rechar ge from Rainfal I-NM	Recharg e from Other Sources- NM	Total Annual Ground Water Recharge (Ham)
1	Madhya Pradesh	Balaghat	Kharlang i	Block	5218	314	534.26	318	6384.26
2	Mahara shtra	Bhandara	Tumsar	Block	4666.0 57	1079.197	95.083	2387.81	8228.14
2.4 Groundwater Quality

Based on the above study, different ground water parameters were computed, which include pH, TDS, EC, DO, Temperature. Ground water in study area is potable with pH ranging 6.4 to 8.5 and total dissolved solid (TDS) ranging from 120 to 1900 ppt and EC ranging from 300 to 3800 μ S. (**Fig 2.8 and 2.9**)

Groundwater quality in the study area is fresh and all major and trace elements are found within the BIS 10500 permissible limit. Thus is suitable for all domestic, industrial and irrigational use. The general parameters of groundwater in study area as analyses are given in Table 2.5. The comparison of data reveals that the area mining (Project Area) is having less TDS).

2.4.1 Groundwater quality of Mining area

Assessment Unit Name	Total Natural Discharges (Ham)	Annual Extractable Ground Water Resource (Ham)	Irrigation Use (Ham)	Total Extracti on (Ham)	Annual GW Allocation for for Domestic Use as on 2025 (Ham)	Stage of Ground Water Extracti on (%)	Categorizatio n (OE/Critical/S emi critical/ Safe)
Kharlangi	430.0	5954.26	1643	1987	388.00	33.371	Safe
Tumsar	411.4	7816.74	3123.72	3744.41	680.53	47.903	Safe

Groundwater quality has been analyzed by collecting groundwater samples of existing tube well in study area. The groundwater test result through NABL accredited Lab show low in TDS in the range of 402 mg/l and all other parameters well within permissible range as shown in table 2.5.

Fig 2.8: TDS map of study area

Fig 2.9: EC map of Study area Pandharwani mine

Creative Enviro Services

Accreditated Organisation by National Accreditation Board for Testing and Calibration Laboratories (NABL), National Accreditation Board for training And Education (NABET) and ISO 9001:2015, ISO 14001:2004, OHSAS 18001:2007

	TEST REPORT			
Name & Address of the Customer To, M/s D.P. RAI "NANHAKA" 10, EAST HIGH COURT ROAD, RAMDASPERTH, NAGPUR (MS)	ULR No: TC68721800000109P Despatch No: 2 97 3 Issue Date : 13/07/2021 Client Ref: Nil Date : Nil			
Qty : 1 No. x 1 litre	Date of Collection	: 25/06/2021		
Method of test : APHA 23rd edition	Date of Receipt	:01/07/2021		
Packing :- Plastic bottle	Period of testing	:		
Sample Condition at receipt: packed	Method of sampling	: BIS/3025		
Sample Particulars: Ground Water	Sample tested as received	: OK		
Sample collected by: CES Representative	Page no.			
No. of Sample - 18	Serial No. of Sample	109/7		

Sr. No	Test Parameters	Unit	Method No.	Pandarwani Mine
				(109/7)
1	pH		4500 H+B	7.52
2	Conductivity	µmhos/cm	2510 B	986.10
3	Turbidity	NTU	2130 B	4.20
4	Total Solid	mg/lit	2540 B	487.00
5	Total Dissolved Solid	mg/lit	2540 C	402.00
6	Total suspended solid	mg/lit	2540 D	85.00
7	Total Alkalinity	mg/lit	2320 B	126.00
8	Total Hardness as CaCO3	mg/lit	2340 C	428.00
9	Ca Hardness as CaCO3	mg/lit	3500 B	212.00
10	Mg Hardness as CaCO ₃	mg/lit	3500 B	216.00
11	*Calcium as Ca	mg/lit	3500 B	84.96
12	*Magnesium as Mg	mg/lit	3500 B	52.48
13	Sulphates as SO4	mg/lit	4500- SO4 E	94.58
14	Chlorides as Cl	mg/lit	4500-Cl- B	131.96
15	Iron as Fe	mg/lit	3500- Fe D	<0.05
16	Nitrate as NO ₃	mg/lit	4500-NO3B	19.58
17	Nitrite as NO ₂ -N	mg/lit	4500- NO2 B	<0.10
18	Phosphate as P	mg/lit	4500-PD	<0.10
19	Fluoride as F	mg/lit	4500- F D	<0.10
20	Copper as Cu	mg/lit	3500-Cu B	<0.10
21	Chromium as Cr6+	mg/lit	3500-Cr+ B	<0.10
22	*Coliform	MPN/100ml	IS:15185	<2.00
23	Manganese as Mn	mg/lit	3500- Mn B	<0.20

42, Doorsanchar Nagar, Near Savoy Complex, E-8 Extension, Gulmohar, Bhopal 462(03910), Telephone : 0755-4299319, Fax : 0755-4243510, Mobile : 9425000310

Email: creativelab.bpl@gmail.com, creative.bpl@gmail.com, Websearch : www.creativeenviroservices.com Note: No statutory liability will be accepted for samples not collected by Creative Enviro Services. 2. The report shall not be reproduced except in full without premission of Laboratory, Creative Enviro Services, Bhopal 3. The tests and/or calibration marked with an" are not accredited by NABL.

Creative Enviro Services

Accreditated Organisation by National Accreditation Board for Testing and Calibration Laboratories (NABL), National Accreditation Board for training And Education (NABET) and ISO 9001:2015, ISO 14001:2004, OHSAS 18001:2007

Name & Address of the Customer To, M/s D.P. RAI "NANHAKA" 10, EAST HIGH COURT ROAD, RAMDASPERTH , NAGPUR (MS)	ULR No: TC68721800000109P 2073 Despatch No: Issue Date : 13/07/2021 Client Ref. Nil Date : Nil		
Qty : 1 No. x 1 litre	Date of Collection	:25/06/2021	
Method of test : APHA 23rd edition	Date of Receipt	:01/07/2021	
Packing :- Plastic bottle	Period of testing	:	
Sample Condition at receipt: packed	Method of sampling	: BIS/3025	
Sample Particulars: Ground Water	Sample tested as received	: OK	
Sample collected by: CES Representative	Page no.		
No. of Sample - 18	Serial No. of Sample	109/7	

Sr. No	Test Parameters	Unit	Method No.	Pandarwani Mine (109/7)
24	Zinc as Zn	mg/lit	3111-Zn B	<0.05
25	Total Chromium	mg/lit	3500-Cr+ B	< 0.05
26	Cadmium as Cd	mg/lit	3111-Cd B	< 0.05
27	Lead as Pb	mg/lit	3111-Pb B	<0.05
28	Mercury as Hg	mg/lit	3112- Hg B	<0.01
29	Nickel as Ni	mg/lit	3111-Ni B	<0.05
30	Arsenic as As	mg/lit	3114-As B	<0.05
31	Sodium Na	mg/lit	3500- Na B	34.67
32	Potassium K	mg/lit	3500- K B	4.53
33	Boron as B	mg/lit	4500-B B	<0.1
34	Selenium as Se	mg/lit	3114-Se B	<0.05
35	COD	mg/lit	5220 B	<4.00
36	BOD (3 day 27degree)	mg/lit	IS 3025, P- 44	<2.00

42, Doorsanchar Nagar, Near Savoy Complex, E-8 Extension, Gulmohar, Bhopal-462 039 (M.P.) Telephone : 0755-4299319, Fax : 0755-4243510, Mobile : 9425009319

Email: creativelab.bpl@gmail.com, creative.bpl@gmail.com, Websearch : www.creativeenviroservices.com

- : No statutory liability will be accepted for samples not collected by Creative Enviro Services. The report shall not be reproduced except in full without premission of Laboratory, Creative Enviro Services, Bhopal The tests and/or calibration marked with an* are not accredited by NABL. 2.

Water Quality Data in Piper Trilinear Diagram: Different graphical methods can be adopted for representing geochemical variation which gives a better insight into the groundwater quality monitoring. One such efficient method of representation is plotting of Hill Piper Trilinear diagram in which data are plotted in two triangle fields and one diamond field. The diamond is then classified under various categories emphasizing their characteristics. (**Fig 2.10 and 2.11**)

Fig 2.10: Sub-divisions of the diamond field

On the basis of data collection from CGWB report (2019-2020). It has been observed that out of 41 samples are concentrated in Area 6 indicating that: Non-carbonate hardness exceeds 50% i.e., Ca + Mg - (SO4 + Cl + NO3). Few samples come under Area 4 representing strong acids (SO4 + Cl + NO3) exceed weak acids (CO3 + HCO3). Only 2 samples can be noticed under Area 7: Non-carbonate alkali exceeds 50% i.e., Na + K- (SO4 + Cl + NO3).

Fig: 2.11 Distribution of water samples in Piper Trilinear Diagram

7.1 USSL Diagram: The United States Salinity Laboratory (USSL) (1954) and Wilcox (1955) established standards for irrigation water quality classification. The Fig.7.5 is a simple scatter chart of sodium hazard (SAR) on the Y-axis versus salinity hazard (EC) on the X-axis.Using the SAR and the EC value of 41 water samples of Balaghat area determines the quality classification of the water.

Based on the EC, irrigation water can be classified into four categories; include:

- I. Low-salinity water (C₁) can be used for irrigation with most crops on most soils with little likelihood that **soil salinity** will develop.
- II. Medium-salinity water (C_2) can be used if a moderate amount of leaching occurs. Plants with moderate salt- tolerance can be grown in most cases without special practices for salinity control.
- III. High-salinity water (C_3) cannot be used on soils, special management for salinity control may be required and plants with good salt tolerance should be selected.
- IV. Very high salinity water (C₄) is not suitable for irrigation under ordinary conditions.

Sodium Adsorption Ratio: High sodium in irrigation water reduces the permeability of soil. The USSL diagram based on SAR divided to four categories included:

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$

- I. Low-sodium water (S_1) can be used for irrigation on almost all soils.
- II. Medium-sodium water (S_2) will present an appreciable sodium hazard in certain fine-textured soils. This water may be used on coarse-textured or organic soils with good permeability.
- III. High-sodium water (S_3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management.
- IV. Very high sodium water (S_4) is generally unsatisfactory for irrigation unless special action is taken, such as addition of gypsum to soil (Lyerly and Longenecker, 1957).

Data Analysis:

On the basis of samples collected from the study area, it can be observed that out of 41 samples of Pre and Post Monsoon 2019, most of the samples are concentrated under C2S1, C2S2 and C3S2categories indicating low to medium sodium hazards with medium to high salinity. Out of these, few samples are scattered under C3S3 and C3S4 categories representing high salinity with high sodium hazard and high salinity with very high sodium hazard respectively(**Fig 2.12**).

3. Details of bore well proposed to be constructed

No well is proposed to be drilled- thus point not applicable.

4. Geophysical Survey of Study area

Surface geophysical investigation involving resistivity survey was taken up in the area covering nearly 1.5 line km area. Five VES (vertical Electrical sounding) was conducted to know the subsurface geohydrological condition in the core zone. The data so obtained is interpreted for use in combination with lithologs obtained during exploratory drilling carried out for ore.

4.1 Geophysical Studies in an around the Mine area

Geophysical/Vertical Electrical Sounding is a technique to delineate the weathered, fractured zone and hydro geological suitability. VES technique is effective to delineate the hard terrain. Geophysical / VES investigation has been carried out at five locations in an around the mine area. Schlumberger electrode configuration in the study area has been conducted to delineate the distribution of subsurface rocks. The usual practice in the field is to apply an electrical direct current (DC) between two electrodes implanted in the ground and to measure the difference of potential between two additional electrodes that do not carry current. Total five numbers of VES (VES 1 to VES 5) have been carried out at site for detection of ground water in alluvium zone of subsurface and different type of rocks. All the data sheets are given below with tabulated interpretation & recommendations.

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

5.N	AB/2 (in Mtr)	MN/2 (in Mtr)	VES-1 APPARENT RESISTIVITY (OHM -Mtr)	VES-2 APPARENT RESISTIVITY (OHM -Mtr)	VES-3 APPARENT RESISTIVITY (OHM -Mtr)	VES-4 APPARENT RESISTIVITY (OHM -Mtr)	VES-5 APPARENT RESISTIVITY (OHM -Mtr)
1.	2	1	2.42	3.47	3.14	2.98	4.17
2.	3	1	2.91	3.93	4.28	5.84	6.24
3.	4	1	4.17	4.52	4.52	10.27	9.02

FROM VES-1 TO VES-5

4.	5	1	6.21	7.83	8.21	14.05	12.55
5.	5	2	6.85	7.51	7.58	13.55	11.01
6.	8	2	10.83	10.64	11.59	18.61	12.06
7.	11	2	13.68	12.49	14.51	15.43	13.96
8.	14	2	14.92	12.66	15.83	16.28	14.17
9.	17	2	18.13	16.11	16.34	21.04	18.35
10.	20	2	21.46	19.59	21.77	24.57	21.77
11.	20	5	22.97	23.20	25.32	26.03	20.02
12.	25	5	26.76	28.65	32.23	30.91	24.88
13.	30	5	34.36	33.26	37.38	36.01	31.88
14.	35	5	42.97	36.94	42.97	42.22	36.56
15.	40	5	50.96	42.55	47.50	43.54	42.55
16.	45	5	55.29	49.00	50.26	45.23	46.49
17.	50	5	69.97	53.65	55.98	52.87	48.98
18.	50	10	72.00				54.28
19.	60	10	90.16				72.24
20.	70	10	105.55				84.44
21.	80	10	124.68				91.04
22.	90	10	139.52				110.61
23.	100	10	157.05				129.06

Hydrogeological Investigation and Impact assessment Report on Padharwani Mine Khairlaji, Balaghat

<u>VES -1</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

- ♦ LOCATION IN MIRAGPUR MINE (24 HACT)
- ✤ LAT 21°37'55.78"N LONG 79°49'54.35"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.513	2.42
2.	3	1	12.56	0.232	2.91
3.	4	1	23.56	0.177	4.17
4.	5	1	37.69	0.165	6.21
5.	5	2	16.49	0.416	6.85
6.	8	2	47.12	0.230	10.83
7.	11	2	91.89	0.148	13.68

8.	14	2	150.8	0.099	14.92
9.	17	2	223.84	0.081	18.13
10.	20	2	311.02	0.069	21.46
11.	20	5	117.81	0.195	22.97
12.	25	5	188.50	0.142	26.76
13.	30	5	274.89	0.125	34.36
14.	35	5	376.99	0.114	42.97
15.	40	5	494.8	0.103	50.96
16.	45	5	628.32	0.088	55.29
17.	50	5	777.54	0.090	69.97
18.	50	10	376.99	0.191	72.00
19.	60	10	549.78	0.164	90.16
20.	70	10	753.98	0.140	105.55
21.	80	10	989.6	0.126	124.68
22.	90	10	1257	0.111	139.52
23.	100	10	1555	0.101	157.05

<u>VES -1</u>

GRAPH B/W APPARENT RESISTIVITY& DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho-log) expected	from	to	
1.	Probability of Soil	0	3	
2.	Probability of red laterite soil	3	5	
3.	Probability of yellow soil or weathered Mica Schist	5	14	
4.	Probability of hard & dense Mica schist	14	40	
5	Probability of fractured, layered, jointed Mica schist	40	45	
6.	Probability of hard compact Mica Schist	45	100	

<u>VES -2</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUBERGER ELECTRODE CONFIGURATION

- ✤ LOCATION NEAR KALA GADDA (OLD PIT)
- ✤ LAT 21°37'52.40"N LONG 79°50'6.30"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.738	3.47
2.	3	1	12.56	0.313	3.93
3.	4	1	23.56	0.192	4.52
4.	5	1	37.69	0.208	7.83
5.	5	2	16.49	0.456	7.51
6.	8	2	47.12	0.226	10.64
7.	11	2	91.89	0.136	12.49
8.	14	2	150.8	0.084	12.66

17	2	223.84	0.072	16.11
20	2	311.02	0.063	19.59
20	5	117.81	0.197	23.20
25	5	188.50	0.152	28.65
30	5	274.89	0.121	33.26
35	5	376.99	0.098	36.94
40	5	494.8	0.086	42.55
45	5	628.32	0.078	49.00
50	5	777.54	0.069	53.65
	17 20 25 30 35 40 45 50	17 2 20 2 20 5 25 5 30 5 35 5 40 5 45 5 50 5	172223.84202311.02205117.81255188.50305274.89355376.99405494.8455628.32505777.54	172223.840.072202311.020.063205117.810.197255188.500.152305274.890.121355376.990.098405494.80.086455628.320.078505777.540.069

<u>VES -2</u>

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho log) expected	from	to	
1.	Probability of Soil	0	4	
2.	Probability of red laterite soil	4	8	
3.	Probability of yellow soil or weathered Mica Schist	8	15	
4.	Probability of hard compact Mica Schist	15	50	

<u>VES -3</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUMBERGER ELECTRODE CONFIGURATION

✤ LOCATION – NEAR MIRAGPUR TO RANI MOHGAON ROAD

✤ LAT - 21°37'51.10"N LONG - 79°50'12.10"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(In AA+m)	2 (in	G	(D OLMS) 1	RESISTIVI
	W(IP)	(m Mtr)	K	(K- OHM3) I	(OHM -Mtr)
1.	2	1	4.71	0.668	3.14
2.	3	1	12.56	0.341	4.28
3.	4	1	23.56	0.192	4.52
4.	5	1	37.69	0.218	8.21
5.	5	2	16.49	0.460	7.58
6.	8	2	47.12	0.246	11.59
7.	11	2	91.89	0.158	14.51
8.	14	2	150.8	0.105	15.83
9.	17	2	223.84	0.073	16.34
10.	20	2	311.02	0.070	21.77
11.	20	5	117.81	0.215	25.32
12.	25	5	188.50	0.171	32.23
13.	30	5	274.89	0.136	37.38
14.	35	5	376.99	0.114	42.97
15.	40	5	494.8	0.096	47.50
16.	45	5	628.32	0.080	50.26
17.	50	5	777.54	0.072	55.98

VES -3

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho log) expected	from	to	
1.	Probability of Soil	0	4	
2.	Probability of red laterite soil	4	8	
3.	Probability of yellow soil or weathered Mica Schist	8	18	
4.	Probability of hard compact Mica Schist	18	50	

<u>VES -4</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUMBERGER ELECTRODE CONFIGURATION

✤ LOCATION – NEAR CHOPRA MINE

✤ LAT - 21°37'49.45"N LONG - 79°50'25.70"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.633	2.98
2.	3	1	12.56	0.465	5.84
3.	4	1	23.56	0.436	10.27
4.	5	1	37.69	0.373	14.05
5.	5	2	16.49	0.822	13.55
6.	8	2	47.12	0.395	18.61
7.	11	2	91.89	0.168	15.43
8.	14	2	150.8	0.108	16.28
9.	17	2	223.84	0.094	21.04
10.	20	2	311.02	0.079	24.57
11.	20	5	117.81	0.221	26.03
12.	25	5	188.50	0.164	30.91
13.	30	5	274.89	0.131	36.01
14.	35	5	376.99	0.112	42.22
15.	40	5	494.8	0.088	43.54
16.	45	5	628.32	0.072	45.23
17.	50	5	777.54	0.068	52.87

<u>VES -4</u>

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOG

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho-log) expected	from	to	
1.	Probability of Soil	0	2	
2.	Probability of red laterite soil	2	8	
3.	Probability of yellow soil or weathered Mica Schist	8	20	
4.	Probability of hard & dense Mica schist	20	35	
5	Probability of fractured, layered, jointed Mica schist	35	45	
6.	Probability of hard compact Mica Schist	45	50	

<u>VES -5</u>

RESISTIVITY SURVEY

GROUND WATER INVESTIGATION

DATA SHEET DEPTH PROBE SCHLUMBERGER ELECTRODE CONFIGURATION

♦ LOCATION – IN FRONT OF PANDHARWANI MINE GATE

✤ LAT - 21°37'42.45"N LONG - 79°50'40.75"E

S.N	AB/2	MN/	SPACIN	MEASURED	APPARENT
	(in	2	G	RESISTANCE	RESISTIVI
	Mtr)	(in	FACTOR	(R- OHMS) 1	ТУ
		Mtr)	K		(OHM -Mtr)
1.	2	1	4.71	0.887	4.17
2.	3	1	12.56	0.497	6.24
3.	4	1	23.56	0.383	9.02
4.	5	1	37.69	0.333	12.55
5.	5	2	16.49	0.668	11.01
6.	8	2	47.12	0.256	12.06
7.	11	2	91.89	0.152	13.96
8.	14	2	150.8	0.094	14.17
9.	17	2	223.84	0.082	18.35
10.	20	2	311.02	0.070	21.77
11.	20	5	117.81	0.170	20.02
12.	25	5	188.50	0.132	24.88
13.	30	5	274.89	0.116	31.88
14.	35	5	376.99	0.097	36.56
15.	40	5	494.8	0.086	42.55
16.	45	5	628.32	0.074	46.49
17.	50	5	777.54	0.063	48.98
18.	50	10	376.99	0.144	54.28
19.	60	10	549.78	0.131	72.24
20.	70	10	753.98	0.112	84.44
21.	80	10	989.6	0.092	91.04

22.	90	10	1257	0.088	110.61
23.	100	10	1555	0.083	129.06

<u>VES -5</u>

GRAPH B/W APPARENT RESISTIVITY & DEPTH

PROBABLE SUB SURFACE LITHOLOGY

S,N.	Sub surface data	Depth below Ground Level (m)		
	(litho-log) expected	from	to	
1.	Probability of Soil	0	2	
2.	Probability of red laterite soil	2	5	
3.	Probability of yellow soil or weathered Mica Schist	5	17	
4.	Probability of hard & dense Mica schist	17	45	
5	Probability of fractured, layered, jointed Mica schist	45	50	
6.	Probability of hard compact Mica Schist	50	100	

5. Approved Mine Plan

5.1: Year Wise Mine plan Including Excavation Depth, Area and Mine Seepage

Pandharwani Manganese mine is located inPandharwani village, Tehsil Khairlanji, District Balaghat, Madhya Pradesh. Miragpur village is in south west portion in Balaghat district, Madhya Pradesh. The total lease area of Pandharwani Mine is 14.99 ha. It extracts Mn by both underground methods.

	Date and reference of earlier approved MP/SOM:								
Sr. no	Leas area	Тур ru	Type of document & rule under which prepared		Approval le	Approval letter No & date		Proposal Period	
1	14.90 Ha		Mining Plan		BGT/Mn/MPLN- 32/NGP, Dated: 15.10.98		For r Valid 1	enewal of Mining Lease. from 1998-99 to 2002-03	
	14.90 Ha &	Mo	odified compos	site	BGT/N	1n/MPLN	-	For ba	llance period –valid up to
2	4.232 Ha		Mining Plan		37/NGP, Da	ted: 31.3	.2000		2002-03
	14.90 Ha &	Co	omposite Mini	ng	BGT/Mn/M	1PLN- 32/	/NGP		
3.	4.232 Ha		Scheme		Dated	16.03.06		Valid-	from 2003-04 to 2007-08
4.	14.90 Ha &	Сс	omposite Minii	ng	BGT/Mn/M	BGT/Mn/MPLN- 32/NGP			
	4.32 Ha		Scheme		Dated 27.10.2011		Valid- from 2008-09 to 2012-13		
5.					BGT/Mn/MPLN- 32/NGP				
	14.90 Ha	Sc	cheme of Minii	ng	Dated 07.05.2014		Valid-	from 2013-14 to 2017-18	
L		David		Diam	MP/Balaghat/Man		Valial	from 2010 10 to 2022 22	
5.	14.90 Ha	Revi	lew of Mining	Plan	Jabalpur dated26/04/2018		valid-	from 2018-19 to 2022-23	
	Details of la	ast m	odifications, if	[:] any (for approved	MP/RMI	P, indica	ating d	<u>ate of</u> approval, reason
			for mo	odifica	ation of previo	ous appro	oved pe	riod):	
			Rule						
Sr.	Modificati	on	under which	Re	easons for	Area	Date	e of	Period of modification
No.	(MP/SON	1)	modified	mo	odification		appr	oval	
	Modificatio	n in	Rule 17(3) of	A	ddition of				
a)	Approved M	ining	MCR 2016 &	ENT	RIESto u/g &	14.90	Unc	ler	2019-20 to 22-23
	Plan		23 of MCDR	ir	ncrease in	На	submi	ssion	
			2017	р	roduction				

Table 5.1: Details of Earlier Approved Mining Plans / Schemes of Mining

Mining Method

Earlier the mine was operating through the opencast mining method upto June,2018. The surface level of opencast mining is at 350mRL and reached upto 300mRL.

Underground Mining has been started from July, 2022 and continues till date. The Mining method adopted here is stopping mining method.

Stopping, is **the opening of large underground rooms, or stopes, by the excavation of ore**. Stopping is practiced in underground mineral mining when the surrounding rock is strong enough to permit the drilling, blasting, and removal of ore without caving. The maximum depth achieved through the underground mining is 115 m i.e. at 235 MRL.

Ultimate purpose of mine development is stopping for winning in-situ ore-deposits Mine development facilitates formation of blocks of minerals for ease in ventilation, travelling, movement of machines and to provide free faces for stopping. It takes minimum period of 3 years for development depending on the extent of ore-reserves etc.

The ore-deposits at this mine have depth persistence up to 250 MRL in NE part of workings, i.e. from NE Lease boundary up to end of open cast. The Incline shaft is driven from the end of open cast working from open pit bottom at 305 MRL and then extended up to surface by a RCC column.

STOP	STOPING PARAMETERS				
i)	Number of Stope Panels	2 No.			
ii)	No. of stopes already stopped	nil			
iii)	Level interval	15m			
iv)	Thickness of crown pillar	17m-			
v)	Thickness of Sill pillar	No Sill Pillars are proposed			
vi)	Thickness of Rib pillar	No rib pillar is proposed.			
vii)	Size and interval of Stope pillar	4x4m at 11m intervals			
viii)	Size/shape of man way	Not proposed. Access from upper level			
ix)	Size/shape of ore pass	Not proposed. Direct hoisting from			
		stopping level.			
x)	Method of stowing/back filling	Stowing with Processed OB materials in			
		the size range of 3mm-20mm			

 Table 5.2: Details of Stoping Parameters

Thus, u/g mine workings are classified as NE block & SW block. The development in NE block is completed up to 250 MRL barring some preparation for stopping. In SW block, ore-deposits are found to be persisting in strike and depth compared to NE block. Strike extension in SW has already surpassed the zone considered/contemplated in ore-reserves calculation based on BH information. The ore is thicker and extended more in SW direction, hence the development take place in this direction. The present working level in SW is 235mRL.

YEAR	EXISTING Total Volume =7500.00 M3	ROM Generation from Total Volume (20%)	Clean Ore (90%) (T)	Mineral Rejects (10%) (M3)	Gross Waste Volume = (2+5) (M3)	Mine Seepag e (KLD)
1	2	3	4	5	6	7
2019-20	1500	1050	945	30	1230	21
2020-21	2000	1400	1260	40	1640	25
2021-22	2000	1400	1260	40	1640	30
2022-23	2000	1400	1260	40	1640	25
TOTAL	7500	5250	4725	150	6150	101

Table 5.3: Actual and Planned production of the mine (*Reference- Approved Mine Plan*)

Fig 5.1 Approved Mine plan of Pandharwani Mine, Khairlanji, Balaghat

Fig 5.2 Manual banificiation of ore at Pandharwani Mine

Fig 5.3 Mining phase of underground mine at Padharwani

6. Use of water obtained from mine dewatering

As per the approved mine plan the Pandharwani mine has a discharge of 41KLD or 41m³/day The entire water is utilize as per the Table 6.1.

Table 6.1: Water Utilization inPandharwani Mine Area (Area = 14.90 Ha)						
Sr.no	Purposes	Environmental Clearance (KLD)				
		Proposed (KLD)	Actual (KLD)			
1	Dust suppression		5			
2	Green belt		4			
3	Domestic	41KLD	2			
4	Drilling		10			
5	Sand stowing	20				
	Totals 41KLD					

6.1 For Drinking – The mine discharge is not used for drinking. Drinking water for the mine is obtained from existing dug well within ML area.

6.2 Irrigation- During monsoon small quantity of water is released from storage tank for irrigation. However, 4KLD mine discharge is used for maintaining green belt.

6.3 Recharge- The mine discharge after three step of de-siltation is stored in a recharge cum storage pond of nearly 0.5ha with a depth of av 1.5m thus having storage capacity of 0.75ham nearly 30% can be taken as recharge from this tank

6.4 Runoff to stream- No discharge is released to any stream from the Pandharwani mine.

6.5 Benefitted area- Nearby villagers of village Padharwani

6.6 Dust suppression, green belt development- as shown in table 9KLD is used for this purpose.

7. Comprehensive assessment of the impact on the ground water regime

Comprehensive assessment of the impact on the ground water regime in and around the project area highlighting the risks and proposed management strategies proposed to overcome any significant environmental issues.

The present phase of Pandharwani Mine is an underground mine for production of Mn ore of 10000 tons/Yr. The mine is to operate between MRL 225 to 205. The surface elevation at 14.9 ha mine lease area varies between 345 and 340 m amsl. There exist no natural surface water drainage/ nala/stream within the mine lease area. Groundwater occurrence is restricted only to the phreatic aquifer developed in the weathered zones of quartz mica schist, the host rock. The UG mining operation are restricted within the hard and massive zone. Thus, the underground mining generates very limited quantity (41KLD) of water as mine discharge, mostly coming in the form of seepage from top phreatic zone (top 10-12m). The extracted groundwater from mine is fully utilized for mining operation and maintaining green belt within ML area after de-siltation at three level. As such there is no significant impact of mining on groundwater regime in this hard rock terrain as the radius of influence is very much restricted due to high heterogeneity. The existing dug well (Photo below-**Fig 7.1**) in front of mine office Pandharwani mine is in use for domestic and drinking purpose maintaining water level throughout the year is hardly 500m from active mining phase. The mine is in operation for last >15 years but the dug well maintain its water level steadily.

7.1. Impact on surface water sources— The Pandharwani Mine is situated on a local high within a regional low as depicted in the **Fig 7.2.** No nala/stream exist or generates from ML area of Pandharwani mine. The ML area is not situated within any wetland zone and not part of any national park etc. Other existing small ponds/ water bodies within core and buffer zone has been investigated and the water quality is found normal.

Fig 7.1 Dug well within mine lease area of the mine

7.1.1 Diversion of existing channels [constructed dam/barrages/weir/canals/hydro-electric projects] – No existing channel, constructed dam/barrages/weir/canals/hydro-electric projects etc need to be diverted due to the project. Thus 7.1.1 is not applicable.

7.1.2 Change in land use [change in flood plain, lotic & lentic systems etc.]-No nala/stream/ river exist or generates from ML area of Pandharwani mine. The ML area is not situated within any wetland zone thus change in land use in flood plain, lotic & lentic systems etc is not applicable.

Fig 7.2 Google elevation profile of study area around Pandharwani Mine from three directions

7.1.3 Current & Potential threats- The ML area is situated onto a water divide from where no nala stream is generating nor any spring ever exist in the area. However, due to moderate rainfall of >1150mm with about 70 rainy days good quantum of runoff (~ 7.7ham/yr) generates from the area as calculated considering about 45% runoff coefficient-

14.9ha x 1.151m x 0.45=7.7ham/yr.

Garland drains are existing to channelize the generated runoff for impounding the water into a water conservation tank. Runoff collected within the pre-existing abandon opencast pit of Pandharwani mine lease area is also gainfully utilized for conservation. It is observed that the core zone having average groundwater level 6m bgl in comparison to that of buffer zone av 5m bgl. This can be due to the higher surface elevation of core zone, which is found av. 342 m amsl, in comparison to buffer zone of 315m amsl. To negotiate any potential threat of groundwater decline in the core zone area rainwater harvesting involving abandon mine pits and ponds are in practice.

7.2 Impact on groundwater sources– The Pandharwani mine lease area is in Khairlangi block of Balaghat district, MP which is categorized under **safe** category (Stage of GW Extraction 33%) by the latest estimation carried out by CGWB (2020). The groundwater levels measured in study area remain shallow (4-8m) throughout the year with 2-3m fluctuation. The area is part of hard rock terrain and consist only phreatic aquifer developed over the weathered zone of quartz mica schist. The thickness of the weathered zone is restricted to top 12-17 m as observed along open case mine pits and by geophysical investigations. Both dug wells and hand pumps are tapping this phreatic aquifer. Bore wells are scanty having a depth of maximum 30m tapping weathered zone and occasional fractures. The present ML is for development of underground mine to extract ore from MRL 225-205 that is about 115m below surface elevation. Present active mining zone is devoid of any water bearing formation and are aquifuge in nature. Little water extracted from mine as mine discharge (41KLD) is mainly the seepage from top. The phreatic aquifer zone is protected and recharged by construction of rainwater harvesting ponds and through abandon open case pits in the core zone of mining.

Fig 7.3 Groundwater contour map of Pandharwani mine area. INDEX-Red line shows groundwater divide, arrows indicating groundwater flow direction, values indicate groundwater elevation (m amsl), dots indicate data point used for generation of GW contour, buffer zone is marked by 10km radius circle. Note the mine position (green box) situated near GW divide. **7.2.1. A description** of the impacts on environmental values that have occurred, or are likely to occur, because of any past ground water abstraction. The ML of Pandharwani mine was obtained in the year 2000 for open cast (OC) mine. The OC miningafter completion closed in the year 2018byachieving bottom level of MRL300 starting from MRL 348. UG mine was started in July 2018. The pit so developed is presently used as first settling pit for mine discharge. Water from this pit is pumped out to second de-siltation chamber using a 200m long open cannel by gravity drain. This further reduces the suspended load. The overflow of second pit accumulates to the final settlement cum water conservation pond. All runoff generated within the pit of abandon OC mine thus also collected and stored at final conservation pond. It was observed in the LULC map that area covered under water body has increased from 60 ha to 123ha (Table 1.2).

7.4 Existing abandon open cast mine pit and water harvesting pit near Pandharwani mine (photo March 2022) and mine plan. Note the bottom of OC pit in plan and photo shown by arrow.

7.2.2 An assessment of the likely impacts on environmental that will occur, or are likely to occur, because of the ground water abstraction for a five-year period starting on the consultation day for the report; and over the projected life of the resource project area, affected area and radius of influence.

The underground mining has obtained its present approved depth of mining MRL225, and the phase development is in progress at this depth. This zone is aquifuge in nature not producing any mine discharge. Even for blast hole drilling water from storage is in use. However, approval for further mining down to depth of MRL 205 is being applied. Since no water bearing fracture zones are available in beyond the depth of 17m therefore it is likely to have no significant change of mine discharge over the projected life of mine. Further, due to high heterogeneity of aquifer in the area the radius of influence is observed less than 500m and vertical seepage is not going to change as mine opening remain same as it is.

7.3. Socio-Economic Aspects:

7.3.1 Settlements and population dynamics around project area

The study area comes under rural. There exists about 35 villages in the study area and their details are given in Table 7.1 and 7.2.

Table 7.1 Crop production details of Balaghat District Madhya Pradesh in kharif andRabi							
	Kharif		Rabi				
Sr. no	Crops	(Ha)	Crops	(Ha)			
1	Rice	244.9	Linseed	19.0			
2	Minor Millets	12.8	Wheat	18.4			
3	Pigeonipea	7.1	Chickpea	10.4			
4	Maize	05.6	Rapeseed/ mustard	7.30			

There is no impact of groundwater withdrawal by Pandharwani Mn Mine on the study area, study can recommend NOC may be extended for next 5 yr with existing 41KLD extractions from groundwater system

7.3.2 Dependency on sources of water [surface or sub-surface] The area by and large depends on rain-fed agriculture with supportive irrigation. Surface water irrigation using canal water is the main source of irrigation within the buffer zone. Local canals network isdeveloped using the water of minor irrigation projects like Hirapur, Tirodi, Sitalgarh and Sadabodi Dam/Reservoirs. Water bodies developed on abandon mine pits are also used as sources of water for irrigation along with some dug wells. Drinking water is mainly catered by groundwater through dug wells and hand pumps. Industrial use of water in the study area is largely remains within the mining sector. Several open cast and underground mine lease area exist within the study area. Mine discharge is the main source of water for mining operation. No other significant industrial use exists in the area.

7.3.3 Ground water uses [e.g. irrigation (irrigation method, number of watering) water supply etc.] Groundwater plays secondary role in irrigation in the study area. The main crop is kharif uses supportive irrigation largely through canals of minor irrigation projects. Mine out pits locally also support the crop water requirement. Dug well fitted with electrical pumps are used to support kharif and rabi crops in the area. The unit draft of dug wells varies from 0.0027 to 0.036 mcm/year. Mine discharge is being used for horticulture within core and buffer zone.

Table 7.2 Population data of study area in parts of Khairlanji, Tirodi and Lalbarra blocks							
S. No.	Location	House	Total	Male	Female	Area (Ha)	
			Population				
1	Bhandarbodhi	838	3520	1690	1830	1412.2	
2	Birsula	186	2620	1309	1311	363.3	
3	Bonkatta	852	3403	1741	1662	195.3	
4	Chhatera	430	1746	893	853	422.6	
5	Chikhla	607	2316	1166	1150	873.3	
6	Churiya Par	249	960	484	476	606.1	
7	Dudhara	285	984	492	492	257.2	
8	Fulchur	489	1858	891	967	742.3	
9	Garragussai	119	498	242	246	221.1	
10	Goorabodi	239	761	392	369	352.2	
11	Gudhrughat	452	1732	830	902	403.8	
12	Hardoli	732	3126	1523	1603	704.6	
13	Hatoda	328	1333	664	669	483.55	
	HirapurReservio	134	507	241	266	302	
14	ur						
15	Jamkhari	172	554	259	295	311.6	
16	Katedara	319	1415	733	712	466.1	
17	Katori	701	2726	1365	1361	932	
18	Kawlewada	571	2179	1067	1112	541.34	
19	Khoka	280	1269	635	634	283.12	
20	Miragpur	389	1418	712	706	328.2	
21	Mohogaon	401	1477	746	731	378.42	
22	Murjhad	216	907	450	457	448.71	
23	Nandi Gaon	426	1848	923	925	447.1	
24	Nawegaon	322	1340	659	681	282.9	
25	Pandarwani	190	711	332	379	281.1	
26	Paraswadaghat	662	2583	1230	1353	889.47	
27	Pind k Par	460	1927	949	978	593.42	
28	Pulputta	613	2691	1332	1359	697.7	
29	Sabargaon	434	1533	748	785	547.83	
30	Sadabodi	181	721	354	367	208.83	
31	Salibardi	771	2839	1375	1464	870.3	
	Shankar	452	1559	776	783	465.9	
32	Pipariya						
33	Sukdighat	295	1207	606	601	438.2	

Hydrogeological Investigation and Impact assessment Report on Padharwani Mine Khairlaji, Balaghat

34	Tekadighat	409	1594	768	826	646.9
35	Tumsar	201	766	379	387	213.6

7.3.4 Improvement / decline in agricultural yield in last 5 years and likely impact after NOC

The average agriculture yield has not changed in last 5 year. The area is of hard rock terrain and the aquifer is quartz mica schist having radius of influence less than 500m as observed the mine core area. So, no likely negative impact of NOC is inferred. Rather LULC shows increase of water body area may provide additional irrigation source

7.3.5 Impact of existing project on local communities [based on local interactions (interactions must be with stakeholders like fishermen community, farmers etc.]

M/s D.P. Rai, Nagpur, is a partnership firm registered under Indian Partnership Act, 1932. Pandharwani Manganese mine is engaged in the mining activities since decades. Pandharwani Manganese mine is located in Pandharwani village, Tehsil Khairlanji, District Balaghat, Madhya Pradesh. It extracts Mn by both underground. The industry has provided employment to the region. The groundwater withdrawal of maximum 41KLD has not created any adverse impact on the groundwater regime of the area. The average water level in study area in pre monsoon period is 5 to 10 m and 2.5 to 6 m during monsoon period. The biggest advantage of the study area is that a seasonal river called Bawanthadi flow in monsoon period of July to October that protects the area from any adverse impact on groundwater. Further the Pandharwani Mn mine has taken up the rainwater harvesting and artificial recharge structure in the lease area. LULC data shows marginal decline in cultivated land in the 10km radius. However, as a whole no complain is observed.

8. Proposed measures for disposal of wastewater by mine drawing saline water.

The water in the study area including mine discharge is fresh and the TDS is ranges between 150 and 1900 ppm in general so disposal of saline water not applicable.
9.0 Water Conservation

Measures to be adopted for water conservation which includes recycling, reuse, treatment, etc. This includes the water balance chart being adopted by the firm along with details of water conservation methods to be adopted. - Brief write up along with capacity and flow chart of Sewage Treatment Plants / Effluent Treatment Plants / Combined Effluent Treatment Plants existing/ proposed within the project. - Details of water conservation measures to be adopted to reduce/ save the ground water. - Total water balance chart showing the usage of water for various processes.

The entire mine discharge (41KLD) is consumed for various mine operation/dust suppression/ plantation-horticultural use (Table 9.1). The mine discharge except high suspended particle is fresh and three step of de-siltation is being practice as discussed previously before the water is stored for further use and or conservation. No sewage treatment plant /effluent treatment plan is in operation, or it is required for mine discharge.

Water conservations can be enhanced by including efficient measures of water use for mining and domestic consumption, effective reuse and recycles of water and treated water, adoption of appropriate rainwater harvesting and artificial recharge methods. It is therefore following sub topics are incorporated in this chapter.

9.1 Water use and water balance

9.2 RWH and Artificial Recharge

9.1 Water use and water balance

Pandharwani Manganese mine is engaged in the mining activities since decades.Water is being used for dust suppression, greenbelt, domestic drilling and sand stowing purposes shown in the table no 3.1

9.2. Rainwater Harvesting & Artificial recharge:

Pandharwani mine having an area of14900 m²having a perimeter of 1144m and its land use is discussed in chapter 1.4 and table 1.1. The mine has taken up concentrated effort conserve each drop of rain water that the campus receives annually. Storm water garland drain has been constructed all along the mining area, office and staff quarter. A settling pond has been constructed adjacent to the shaft which acts as a collection center of mine discharge. Another cemented settling pond has been constructed on the other side for the collection of mine water. A recharge structure has been constructed, where water gets collected from the uplands through drains. This is again connected to a large recharge structure having an area of 3108 m3 and depth of 3 m. This structure ism2 able to collect water from area of 54758 m2 and can recharge about 31486 m3/yr calculated below. The collected water is again used in agriculture purposes of the surrounding areas. The runoff co-efficient has been taken 85% here. The settling ponds and recharge structures are shown below.

Recharge Water= Area x normal rain fall x runoff coefficient

Q=54758x1.15x0.5=31486m3

Table 9.1: Wat	er Utilization in Pandhar	wani Mine Area (Area = 14.	90 Ha)
Sr.no	Purposes	Environmental Clear	rance (KLD)
		Proposed (KLD)	Actual (KLD)
1	Dust suppression		5
2	Green belt		4
3	Domestic	41KLD	2
4	Drilling		10
5	Sand stowing		20
		Totals	41KLD

Fig:9.1 Existing rainwater harvesting pond cum storage tank in study area

Fig: 9.2 Showing two settling ponds for collection of mine discharge

Tabl	e 9.2 Ponds and	water bodies	of study area	I					
S. N.	Location	Latitude	Longitude	Elevation	EC (μS)	рН	TDS (ppt)	DO (mg/l)	Water body
1	Pandharwani	21.63169	79.840268	364.51	540	8.1	120	6.2	Pit Mine
2	Goorabodi	21.65752	79.870229	343	580	8.1	250	9.4	Pond
3	Yerwaghat	21.65932	79.870783	335.56	950	7.3	320	5.88	Pond
4	Gorra Bodhi	21.66741	79.89621	337.4	780	8.2	280	4.8	Pond
5	Chikhla	21.68219	79.908152	343.59	980	8.2	320	6.2	Pond
6	Nandi Gaon	21.68292	79.814956	342.53	850	8.1	320	10.34	Pond
7	Mohogaon	21.68023	79.8335	334.1	790	8.5	335	6.46	Pond
8	Sundergaon	21.68946	79.846363	320.15	790	8.1	250	6.9	Pond
9	Khoka	21.71033	79.801737	346.83	450	8.4	310	5.9	Pond
10	Tirodi	21.68648	79.727579	358.18	440	7.3	160	2.7	MOIL Reservoir
11	SakuntalaKaus al Mine	21.63351	79.806412	328.59	610	8.1	310	4.79	Mine Pit
12	Churiya Par	21.5827	79.835526	280.27	640	8.3	220	4.93	Pond
13	HirapurReservi our	21.56538	79.779562	299.59	550	8.1	160	6.1	Reservoir
14	Fulchur	21.56236	79.871388	294.63	910	8.4	350	5.77	Pond
15	Miragpur mine	21.63247	79.832276	344.78	630	8.1	320	5.48	Recharge pit
16	Pandharwani Mine	21.62528	79.84262	360.09	450	8.3	150	6.9	Recharge structure

Fig: 9.3 Recharge Structure in Study area

Fig: 9.4 Agriculture land in the mine area

9.3. Monitoring, Measurement and Capacity building

Monitoring and measurements of several parameters are part of water conservation strategy towards the motive of efficient management of water. The withdrawal of groundwater is regularly monitored and measured from the existing dug well. The water level is found at 5-10 m bgl in premonsoonal period, which varies from 2.5-6 m bgl in the monsoonal period. The Pandharwani mine conducts regular capacity building of its maintenance staff that monitors and measures and keeping record of various data related to water use and water conservation. The workers have been trained for keeping record and onward submission of data as per the requirement.

For monitoring of groundwater level in the area of Pandharwani mine, Balaghatas per the guideline of CGWA, a piezometer has to be constructed at the area. The installation of piezometer is proposed exclusively for monitoring of groundwater level deploying automatic water level recorder with telemetric arrangement of data transmission.

Proposed Roof top rainwater harvesting structure

A roof top rainwater harvesting is proposed using standard deign as given below for mine office and associated building at the mine core zone by drilling of 30m deep 6'' dia bore well (**Fig 9.5**) in addition to existing recharge structure (Fig 9.1).

Fig 9.5 Design of proposed rooftop rain water harvesting structure

10. Any other details pertaining to the project

Manganese ore- Manganese ore horizon comprising of mostly manganese ore and manganiferous quartzite of Mansar Formation. The manganese ore is massive in nature containing mainly psilomelane. The trend of the manganese ore deposit is mostly NNE-SSW and the angle of dip is varying from about 750 to 800 due WEST as such there is every possibility of availability manganese ore in the hanging wall side. Ore body width ranges between 10-12m in general. However, in SW direction at 265 MRL and 250 MRL in ore drive, the width has increased to 20 m width over a strike length of 50m before it terminates and plunges.

		Ann	exure-1 D	ATASET I	PANDH	ARW	ANIARE	A, BAL/	AGHAT		
S. N.	Location	Latitude	Longitude	Elevat ion	EC (mS)	рН	TDS (ppt)	Wat er Leve I(m)	Dia mete r(m)	DO (mg/l)	Type of water body
1	Pandharwa ni	21.631688	79.84026 8	364.5 1	540	8.1	120			6.2	Pit Mine
2	Miragpur	21.635695	79.83843 8	363.0 8	170 0	6.8	860			6.54	Hand Pump
3	Miragpur	21.637156	79.83728 3	355.2	169 0	7.2	850				Hand Pump
4	Miragpur	21.639436	79.84097 4	349.5 2	142 0	7.5	230			2.38	Hand Pump
5	Sukdighat	21.648613	79.84875 5	342.0 9	156 0	7.2	650	7	2.7	4.53	Dug well
6	Sukdighat	21.648322	79.85030 3	351.7 1	183 0	7.2	920			2.72	Hand Pump
7	Sukdighat	21.648242	79.85107 1	353.4 8	255 0	7.3	1230				Dug well
8	Sukdighat	21.650272	79.85238 4	346.0 6	210 0	7.1	1000			2.4	Hand Pump
9	Sukdighat	21.650272	79.85238 4	346.0 6	199 0	7.8	1050	6.7	2.5		Dug well
10	Goorabodi	21.657518	79.87022 9	343.6 5	110 5	7.5	220			2.5	Hand Pump
11	Goorabodi	21.657518	79.87022 9	343	580	8.1	250			9.4	Pond
12	Goorabodi	21.657518	79.87022 9	343.5 6	125 0	7.2	300			3.05	Hand Pump
13	Yerwaghat	21.65932	79.87078 3	335.5 6	950	7.3	320			5.88	Pond
14	Goorabodi	21.66087	79.87020 3	353.7 4	740	7.1	370				Hand Pump
15	Salibardi	21.671405	79.87770 7	336.3 2	680	6.5	150				Hand Pump
16	Salibardi	21.669789	79.87845 9	335.4 6	650	7	250				Hand Pump
17	Gorra Bodhi	21.667408	79.89621	337.4	780	8.2	280			4.8	Pond
18	Gorra Hydrogeologica Bodhi	ıl 21.665994 n	79.89566 and Imgpact as	331.1 sessment	R 680 rt	o 7.4 a	dh 320 ar	ni 1 41:18 e	Kha 2 flaji,	Ba la ghat	Dug well
19	Chikhla	21.66357	79.89553 5	333.9 5	122 0	7.5	620	6	2.8	2.05	Dug well

20	Chikhla	21.684507	79.90515 7	328.4 8	145 0	7.2	720				Hand Pump
21	Chikhla	21.682636	79.90635 8	332.5 8	191 0	6.9	960	8	2	3.61	Dug well
22	Chikhla	21.682192	79.90815 2	343.5 9	980	8.2	320			6.2	Pond
23	Chikhla	21.682192	79.90815 2	343.5 9	530	7.8	260				Hand Pump
24	Miragpur	21.638487	79.8347	353.8 1	650	7.3	320				Hand Pump
25	Sabargaon	21.641404	79.82440 6	343.1 3	178 0	6.4	890				Hand Pump
26	Sabargaon	21.642618	79.82337 7	342.4 4	380 0	6.8	1900	6.5	2	2.6	Dug well
27	Sabargaon	21.644069	79.82346 2	340.7 6	296 0	6.9	1480				Hand Pump
28	Paraswada ghat	21.649093	79.82065 4	328.5 9	660	7.5	320				Hand Pump
29	Paraswada ghat	21.659513	79.80791 7	338.8	100 5	7.3	520	7	2.5	7.2	Dug well
30	Paraswada ghat	21.660558	79.80533	351.7 6	910	7.8	450				Hand Pump
31	Paraswada ghat	21.664135	79.80191 9	340.5 3	268 0	7.1	1340				Hand Pump
32	Paraswada ghat	21.66312	79.80287 6	343.8 9	363 0	6.8	1820				Hand Pump
33	Nandi Gaon	21.684963	79.80627 2	339.6 3	600	7.7	300				Hand Pump
34	Nandi Gaon	21.684272	79.81040 1	339.8 4	192 0	6.9	970				Hand Pump
35	Nandi Gaon	21.682917	79.81495 6	342.5 3	850	8.1	320			10.34	Pond
36	Mohogaon	21.679234	79.82301 7	339.1 2	530	7.7	260				Hand Pump
37	Mohogaon	21.678983	79.82513 1	346.4 1	136 0	7.2	690				Hand Pump
38	Mohogaon	21.68023	79.8335	334.1	790	8.5	335			6.46	Pond
39	Sundergao n	21.68713	79.83961 9	326.1	720	7.3	360				Hand Pump
40	Sundergao n	21.689001	79.84026 6	326.3	264 0	6.7	1330				Hand Pump
41	Sundergao n	21.685458	79.83265 1	333.1 4	890	7.3	440				Hand Pump

42	Sundergao n	21.689457	79.84636 3	320.1 5	790	8.1	250			6.9	Pond
43	Nawegaon	21.704839	79.84869 5	333.1 7	159 0	7.2	790				Hand Pump
44	Tumsar	21.70996	79.86563 8	332.4 6	173 0	7.2	860				Hand Pump
45	Tumsar	21.710944	79.86723 7	329.6 9	139 0	7.3	690				Hand Pump
46	Dudhara	21.706201	79.88475 2	316.4 2	700	7.2	340				Hand Pump
47	Dudhara	21.704471	79.88507 4	328.1 7	760	7.3	380				Hand Pump
48	Dudhara	21.696104	79.88936 9	314.1 5	720	7.6	240				Hand Pump
49	Jamkhari	21.695575	79.90047 8	321.8 7	128 0	7.4	640				Hand Pump
50	Jamkhari	21.694672	79.90120 8	319.1 5	102 0	7.4	390				Hand Pump
51	Gudhrugha t	21.64652	79.83476 2	340.5 6	580	7.9	280	4.2	1.5	5.3	Dug well
52	Birsula	21.691179	79.82877 2	334.8 9	102 0	7.4	540				Hand Pump
53	Birsula	21.694301	79.82710 5	351.1 1	108 0	7.7	560	4.5	2		Dug well
54	Sitakhor	21.717681	79.81653 3	341.6 5	540	7.4	260	5	2		Dug well
55	Sitakhor	21.719929	79.81962	340.2 4	680	7.3	340				Hand Pump
56	Khoka	21.705623	79.81212 1	347.0 8	820	7.7	310	1.45			Borewell
57	Khoka	21.710329	79.80173 7	346.8 3	450	8.4	310			5.9	Pond
58	Katedara	21.711607	79.79643 2	340.4 7	104 0	7.2	340				Hand Pump
59	Katedara	21.711856	79.79235 7	342.8 7	880	7.5	440	4	1.5		Dug well
60	Bothwa	21.697268	79.77072 9	352.4 2	143 0	7.1	740				Hand Pump
61	Tirodi	21.686482	79.72757 9	358.1 8	440	7.3	160			2.7	MOIL Reserviou r
62	Tirodi	21.685706	79.72747 5	334.4 9	840	7.4	320				Hand Pump

63	Tirodi	21.686257	79.73992 2	332.9	720	7.1	310	4.5	2		Dug well
64	Bamani	21.614417	79.73639 1	306.3 3	820	7.1	444	3.5	2		Dug well
65	Bamani	21.610979	79.74121 3	290.9 9	160 0	7	800				Hand Pump
66	Bonkatta	21.602868	79.75387 9	286.6	910	7.1	440	6	1.4		Dug well
67	Bonkatta	21.609446	79.75825 4	295.8 6	125 0	6.9	620				Hand Pump
68	Garragussa i	21.641741	79.78016 5	310.5 9	740	6.9	220				Hand Pump
69	Garragussa i	21.645568	79.77680 8	301.6 8	111 1	6.7	560	4.3	2.1		Dug well
70	Garragussa i	21.645046	79.77097 8	306.1 3	172 0	7.2	900	5.1	2		Dug well
71	Sadabodi	21.644859	79.76074 7	305.0 2	141 0	7.2	710				Hand Pump
72	Sadabodi	21.643897	79.76355 3	309.2 9	136 0	7.4	680	4.4	1.5		Dug well
73	Garragussa i	21.642687	79.77919 6	307.2 1	710	8	190				Dug well
74	SakuntalaK ausal Mine	21.633512	79.80641 2	328.5 9	610	8.1	310			4.79	Mine Pit
75	Hatoda	21.631088	79.81002 7	336.7 5	550	7.5	220				Hand Pump
76	Ranimohga on	21.622631	79.83492	329.1 2	221 0	7.2	1005				Hand Pump
77	Ranimohga on	21.61919	79.83461 9	329.8 1	105 0	7.5	510	6	2	4.03	Dug well
78	Pandarwan i	21.61232	79.83706 4	337.8 2	990	7.2	450				Hand Pump
79	Pandarwan i	21.61013	79.84206 4	341.2 3	880	7.2	380				Hand Pump
80	Pind k Par	21.594223	79.85679 7	302.8 2	105 0	7.3	460				Hand Pump
81	Pind k Par	21.58805	79.84899 1	304.4 5	630	7.4	230				Hand Pump
82	Churiya Par	21.582704	79.83552 6	280.2 7	640	8.3	220			4.93	Pond
83	Churiya Par	21.582679	79.83405 6	285.0 4	196 0	7.5	980				Hand Pump
84	Churiya	21.579936	79.83065	296.6	105	7.5	490	4.5	1.5		Dug well

	Par		6	2	0						
85	Chhatera	21.568803	79.82010 7	279.7 8	850	7.6	430				Hand Pump
86	Chhatera	21.57065	79.81649 8	275.2 9	690	7.3	290				Hand Pump
87	Pulputta	21.581237	79.80599 4	280	888	7.3	340				Hand Pump
88	Pulputta	21.593379	79.79569 3	283.8 7	128 0	7.8	640				Hand Pump
89	Hardoli	21.6047	79.77020 2	293.2 3	680	7.3	320				Hand Pump
90	HirapurRes erviour	21.565377	79.77956 2	299.5 9	550	8.1	160				Reservoir
91	Kawlewad a (Near Bawantha dhi river)	21.566132	79.80411 5	283.1 9	830	7.3	360	6	1.5		Dug well
92	Kawlewad a	21.565443	79.80666 8	284.9 6	740	7.8	370				Hand Pump
93	Ganodh	21.556435	79.82122 5	280.4 4	116 0	7.2	580				Hand Pump
94	Tejutekari	21.554654	79.82814 9	272.3 5	158 0	7.3 3	800				Hand Pump
95	Shankar Pipariya	21.547736	79.84616 8	276	200 0	7.3	1000				Hand Pump
96	Fulchur	21.561858	79.87111 7	293.7 2	258 0	7.3	1290				Hand Pump
97	Fulchur	21.562363	79.87138 8	294.6 3	910	8.4	350			5.77	Pond
98	Katori	21.5756	79.89625 4	279.1 1	187 0	7.4	940	4.2	1.5		Dug well
99	Bhandarbo dhi	21.588696	79.90129 3	277.1 9	890	7.5	320				Hand Pump
100	Murjhad	21.627167	79.93506 7	285.5 1	102 0	7.4	250				Hand Pump
101	Jhariya tola	21.646052	79.94073	301.2 2	890	7.4	430				Hand Pump
102	Miragpur mine	21.63247	79.83227 6	344.7 8	630	8.1	320			5.48	Recharge pit
103	Miragpur Handpump	21.633039	79.83373	348.9 7	710	7.6	350				Hand Pump
104	Pandharwa ni Mine	21.628271	79.84422 5	344.4	300	7.4	150	5	3	3.8	Dug well

105	Pandharwa ni Mine	21.628271	79.84422 5	344.4	680	7.3	340		2.44	Hand Pump
106	Pandharwa ni Mine	21.625276	79.84262	360.0 9	450	8.3	150		6.9	Recharge structure

Buffer Zone										
S. N.	Location	Latitude	Longitude	Elevatio n	EC (mS)	рН	TDS (ppt)	Water Level (m)	DO (mg/l)	Type of water body
1	Goorabodi	21.657518	79.870229	343.65	1105	7.5	220		2.5	Hand Pump
2	Goorabodi	21.657518	79.870229	343.56	1250	7.2	300		3.05	Hand Pump
3	Goorabodi	21.66087	79.870203	353.74	740	7.1	370			Hand Pump
4	Salibardi	21.671405	79.877707	336.32	680	6.5	150			Hand Pump
5	Salibardi	21.669789	79.878459	335.46	650	7	250			Hand Pump
6	Chikhla	21.684507	79.905157	328.48	1450	7.2	720			Hand Pump
7	Chikhla	21.682192	79.908152	343.59	530	7.8	260		_	Hand Pump
8	Paraswadaghat	21.649093	79.820654	328.59	660	7.5	320		_	Hand Pump
9	Paraswadaghat	21.660558	79.80533	351.76	910	7.8	450		_	Hand Pump
10	Paraswadaghat	21.664135	79.801919	340.53	2680	7.1	1340			Hand Pump
11	Paraswadagnat	21.66312	79.802876	343.89	3630	6.8	1820		-	Hand Pump
12	Nandi Gaon	21.684963	79.806272	339.63	600	1.1	300			Hand Pump
13	Nandi Gaon	21.684272	79.810401	339.84	1920	6.9	970		-	Hand Pump
14	Monogaon	21.679234	79.823017	339.12	530	7.7	260		-	Hand Pump
15	Monogaon	21.678983	79.825131	346.41	1360	7.2	690		-	Hand Pump
16	Sundergaon	21.68/13	79.839619	326.1	720	7.3	360		-	Hand Pump
17	Sundergaon	21.689001	79.840266	326.3	2640	6.7	1330		-	Hand Pump
18	Sundergaon	21.685458	79.832651	333.14	890	7.3	440		-	Hand Pump
19	Nawegaon	21.704839	79.848695	333.1/	1590	7.2	/90	<u> </u>		Hand Pump
20	i umsar	21.70996	79.865638	332.46	1/30	7.2	860	 	+	Hand Pump
21	Tumsar	21.710944	79.867237	329.69	1390	7.3	690		-	Hand Pump
22	Dudhara	21.706201	79.884752	316.42	700	7.2	340			Hand Pump
23	Dudhara	21.704471	79.885074	328.17	760	7.3	380			Hand Pump
24	Dudhara	21.696104	79.889369	314.15	720	7.6	240		-	Hand Pump
25	Jamkhari	21.695575	79.900478	321.87	1280	7.4	640			Hand Pump
26	Jamkhari	21.694672	79.901208	319.15	1020	7.4	390		-	Hand Pump
27	Birsula	21.691179	/9.828//2	334.89	1020	7.4	540		-	Hand Pump
28	Sitakhor	21.719929	79.81962	340.24	680	7.3	340	4.45	-	Hand Pump
29	Knoka	21.705623	79.812121	347.08	820	7.7	310	145	-	Borewell
30	Katedara	21.711607	79.796432	340.47	1040	7.2	340			Hand Pump
31	Bothwa	21.697268	79.770729	352.42	1430	7.1	740			Hand Pump
32	Tirodi	21.685706	79.727475	334.49	840	7.4	320		-	Hand Pump
33	Bamani	21.610979	79.741213	290.99	1600	/	800			Hand Pump
34	Bonkatta	21.609446	79.758254	295.86	1250	6.9	620		-	Hand Pump
35	Garragussai	21.641741	79.780165	310.59	740	6.9	220			Hand Pump
36	Sadabodi	21.644859	79.760747	305.02	1410	7.2	/10			Hand Pump
37	Hatoda Biadu Bar	21.631088	79.810027	336.75	550	7.5	220		-	Hand Pump
38	Pind K Par	21.594223	79.856797	302.82	1050	7.3	460		-	Hand Pump
39	Pind K Par	21.58805	79.848991	304.45	630	7.4	230			Hand Pump
40	Churiya Par	21.582679	79.834056	285.04	1960	7.5	980		-	Hand Pump
41	Chhatera	21.568803	79.820107	279.78	850	7.6	430		-	Hand Pump
42	Chnatera	21.57065	79.816498	275.29	690	7.3	290			Hand Pump
43	Pulputta	21.581237	79.805994	280	888	7.3	340		-	Hand Pump
44	Pulputta	21.593379	79.795693	283.87	1280	7.8	640		-	Hand Pump
45	Hardoli	21.6047	79.770202	293.23	680	7.3	320		-	Hand Pump
40	Kawiewada Canadk	21.565443	79.806668	284.96	/40	7.8	3/0	<u> </u>		
4/	Ganoun	21.556435	79.821225	280.44	1100	7.2	580		+	
4ð	rejulekari Shankar Dinariwa	21.554654	79.828149	2/2.35	1280	/.33	800	<u> </u>	+	
49	Sulchur	21.54//30	70.071117	2/0	2000	7.3	1200		+	
50	r ulcilul Rhandarhadh:	21.301858	70.001202	293.72	2580	7.3	1230	I	+	
52	Muribad	21.588696	70 025067	2/7.19	890 1020	7.5	320		+	Hand Pump
52	Ibariya tolo	21.02/10/	70 04070	203.51	1020	7.4	420	 	+	Hand Pump
33	Jindi iya LUId	21.040052	/9.940/3	301.22	890	7.4	430		-	nanu rump
	I		1	CORE	ZONE	1	1	1	1	
1	Kanimohgaon	21.622631	/9.83492	329.12	2210	7.2	1005	I	+	Hand Pump
2	Miragpur Handpump	21.633039	79.83373	348.97	710	7.6	350			Hand Pump
3	Pandharwani Mine	21.628271	79.844225	344.4	680	7.3	340		2.44	Hand Pump
4	Miragpur	21.639436	79.840974	349.52	1420	7.5	230	I	2.38	Hand Pump
5	Miragpur	21.635695	79.838438	363.08	1700	6.8	860		6.54	Hand Pump
6	Miragpur	21.637156	79.837283	355.2	1690	7.2	850	I		Hand Pump
7	Miragpur	21.638487	79.8347	353.81	650	7.3	320	ļ	 	Hand Pump
8	Pandarwani	21.61232	79.837064	337.82	990	7.2	450	ļ	 	Hand Pump
9	Pandarwani	21.61013	79.842064	341.23	880	7.2	380	L		Hand Pump
10	Sukdighat	21.648322	79.850303	351.71	1830	7.2	920	ļ	2.72	Hand Pump
11	Sukdighat	21.650272	79.852384	346.06	2100	7.1	1000	L	2.4	Hand Pump
lydroe	Sabargaon Inve	21.641404	79.824406	343,13	5 1780 t	Report	0 ⁸⁹⁰ a	dharw	ani Min	Hand Pumpaii. Bal
13	Sabargaon	21.644069	79.823462	340.76	2960	6.9	1480			Hand Pump

Manav Rachna International Institute of Research and Studies NAAC A++Grade, Deemed-to be- University

BROCHURE

Manav Rachna Centre for Advance Water Technology & Management (MRCAWTM)

July 2023

ABOUT THE CENTRE

Manav Rachna Centre for Advance Water Technology & Management (MRCAWTM) was established in 2017 to pursue teaching, research, consultancy and impart training programmes in hydrogeology, water resources engineering and management, water quality and collateral environment and ecology issues. The Centre forms a pool of professionals and researchers from the field of hydrology, hydrogeology, hydrochemistry, eco-hydrology and environment management. Besides, the Center has also developed a skill set on community centric water resource development, socio-hydrology and watershed based sustainable management. The Center aims to address real challenges faced by the stakeholders and also provides a platform for science and technology-based

solutions through non-invasive investigation, water quality analysis, recycling of waste water, surface and ground water flow and resource analysis, satellite databased interpretation, local and regional scale hydro-statigraphic analysis, mathematical modeling of water resources and GIS based applications.

MRCAWTM is having five field units, one each at Barmer, Ballabhgarh, Khol-Rewari, Palwal and Panchkula where two to ten field specialists are working. MRCAWTM in its short period of journey, has been able to achieve significant milestones in the form of projects

obtained, executed, and completed. So far 16 projects have been successfully completed between June 2018 and June 2023 of worth ~Rs2.63 Cr. Further, 07 more projects of Rs 12.34 Cr are in progress as on 1st July 2023. MRCAWTM is working for its vision of **clean water for all forever.** The major area of work is divided into 1. R&D Studies, 2. Technical Interventions, 3. Training and Capacity Building, 4. Outreach programs, 5. Product and Innovation. The Center has also established linkage with various Governmental, academic, and non-Governmental agencies through MoUs.

Vision: "Clean water for all forever" (सदा सबके लिए शुद्ध जल)

MRCAWTM has been able to **achieve Accreditation of CGWA, GOI** on 1st Oct 2021 for next 5 yrs. MRCAWTM has grabbed the **Aqua Foundation Excellence Award, 2017** under the category of Institutional Excellence in Resource Management. The faculties of Center have published high impact research papers in National and International Scientific Journals and written Books and Book chapters of reputed publishers.

<image><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text>

MOUs OF CENTER

	Active MOUs of MR	Center f	or Advance Water Technology	and
		Manage	ment, MRIIRS	
SN o	Name of Organization	Date of MOU	Activates Taken up under MOU	Valid for
1	Central Ground Water Board, MoJS, GOI	26.06.2020	Faculty exchange- CGWB Scientists were invited as External Examiners, MRIRS Civil Eng, students visited CGWB Campus. MRCAWTM experts attended group discussion at CGWB, Joint Water Summit 2023 on 24 th Feb23.	2 Years further Extended
2	Geovale Services Kolkata	18.08.2021	Geovale used our expertise on Rockworks for their project, MRCAWTM experts invited to attend one day workshop at Kolkata on 18 th Jan23	4 Years
3	EMTRC New Delhi	21.09.2021	MRCAWTM expert assisted EMTRC in fly ash project.	3 Years
4	CAIRNS-Vedanta Oil & Gas Pvt Ltd Gurugram	11.06.2021	Joint monitoring of aquifers of Barmer area through half yearly hydrocensus of about 1000 water wells.	3 Years
5	IWRD, Govt of Haryana	11.08.2021	MRCAWTM is District Implementation Partner of IWRD in participatory ground water management in Gram Panchayat level in three districts of Haryana	4 Years
6	WCS Bhubaneswar	03.03.2022	MRCAWTM conducted 7 consultancy projects of Fe ore mines for WCS during last one year	5 Years
7	SGSD, Gurugram	01.07.2022	SGSD experts carried out civil construction of ASR systems established under MRCAWTM owned DST Project.	1 Year
8	Ministry of Jal Shakti, WR&RD	12.04.2023	Establishing a Program Support Unit for Namami Gange Under National Water Mission	3 Years

MRCAWTM is accredited under CGWA to prepare reports in the functional areas of 1. Groundwater Impact Assessment 2. Hydrogeological reports of Mining Projects

ON GOING PROJECTS OF MRCAWTM

				As on 01st July 2023
Sn.	Ongoing Projects of MRCAWTM, MRIIRS	Funding Agency	From Date & Period	Objective
1	Co-solving Water logging and Groundwater depletion issue in parts of Faridabad Smart City	WTI, DST, GOI	21 .05. 21 36 months	DST Project on solution to flash flood and groundwater (GW) depletion
2	Hydro Geological Survey for Aquifer Monitoring in Barmer Area, Rajasthan,	Cairn Oil & Gas Vedanta Ltd	02.07.21 36 months	Industrial project on impact study on GW use
3	Haryana Atal Bhujal Yojna- Cluster 06 (Faridabad-Rewari Districts)	IWRD Haryana	11.8.2021 48 months	Haryana Govt Project on improving sustainability of GW through participatory approach
4	Haryana Atal Bhujal Yojna- Cluster 07 (Palwal District)	IWRD Haryana	11.8.2021 48 months	at Gram panchayat level in Haryana
5	Haryana Jal Jeevan Mission – State Implementation Support Agency (SISA)	PHED Haryana	27.09.2021 24 months	Haryana Govt Project on assured household water supply in rural Haryana
6	Haryana Jal Jeevan Mission – Energy Audit State Implementation Support Agency	PHED Haryana	01.11.2022 12 months	Haryana Govt project on auditing energy consumption for GW abstraction
7	Groundwater condition study in core and buffer zone of proposed Iron ore mine around Villages, Eklama, District Kabirdham, CG	WCS Bhubaneswar	01.07.2023 04 months	Impact assessment of mining on GW for NOC under CGWA accreditation.

WAY FORWARD

Fu	ture	Expar	nsic	on P	lan	
MRCAWTM	_					
SW & GW Wing	MRC	AWTM				
(SWGWW)	Grey	Water Win	g	MRCA	AWTM	
Existing		(GEWW) Proposed		Agri Water & Ecology Wing		
	C bair C	DG, MREI			(AWEW) Proposed	
C C			AVVI			
D	recto	or MRC	AW	IM		
Dir	Dy ector	Dy Director	Dire)y ector		
SW	GWW	GEWW	AW	/EW		

Completed projects under MRCAWTM, as on 30th June 2023

No	Project Name and Status	Funding Agency	Date of Comp.	Objective
1	Technical guidance in construction of Rainwater Harvesting Structures in Faridabad City	M/s Navjoti Foundation, Gurugram	29.03.2023	Rainwater conservation
2	Impact assessment of mining of Iron ore on GW in and around Raikela Sundargarh Odisha.	M/s WCS Bhubaneshwar, Odissa	08.10.2022 04 months	Impact assessment of Mining on GW
3	Impact assessment of mining of Iron ore on GW in and around Dholta Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 08 months	Impact assessment of Mining on GW
4	Impact assessment of mining of Iron ore on GW in and around Netrabandh Pahar, Sundergarh,	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Impact assessment of Mining on GW
5	Study for Rainwater harvesting around Iron ore mine of Dholta Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Rainwater harvesting in Mining area
6	Study for Rainwater harvesting around Iron ore mine of Netrabandh Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Rainwater harvesting in Mining area
7	Biodiversity study around Iron ore mine of Dholta Pahar, Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Biodiversity in Mining area
8	Biodiversity study around Iron ore mine of Netrabandh Pahar Sundergarh, Odissa	M/s WCS Bhubaneshwar, Odissa	04.4.2022 04 months	Study for Biodiversity in Mining area
9	Impact assessment of underground mining of Manganese on GW in and around Miragpur, MP.	M/s D P Rai, Balaghat MP	April 2022 3 months	Impact assessment of Mining on GW
10	Impact assessment of underground mining of Manganese on GW in and around Pandarwani, MP.	M/s D P Rai, Balaghat MP	April 2022 3 months	Impact assessment of Mining on GW
11	Hydro Geological Survey for Aquifer Monitoring in Barmer Area, Rajasthan (2018- 21).	Cairns O&G Vedanta Ltd	June 2021 36 months	Industrial project on impact study on GW use
12	Communicating Science through Model Water and Eco-Health Clinic for quality of life.	NCSTC, DST, GOI	May 2020 15 months	Water literacy through hands on experiments for students
13	USAID URBAN WASH Innovation Lab,	USAID-NIUA	Dec 2019 30 months	Awareness on water and sanitation
14	Detailed investigations in Khoh Village for Rainwater Harvesting,	MSF, Gurgaon	April, 2019 3months	Sustainable solutions of groundwater use
15	ISP system for treating saline Groundwater- Techno-Commercial, abandoned due to Change in policy of State of Haryana on saline water use	Maharani Innovative Paints Pvt Ltd. Prithla	Sept 2020 12 months	Use of saline water through eco-friendly technology
16	Reconnaissance survey for Water prospect in 10 adopted villages of Maruti-Suzuki Foundation	MSF, Gurgaon	Dec 2018	Sustainable solutions of groundwater use

DST FUNDED PROJECT-FARIDABAD

Co- solving Water Logging and Ground Water Depletion Issue in parts of Faridabad Smart City using Underground Taming of Flood Water for Aquifer Storage and Recovery: WTC-DST GOI Supported Project No-DST/TMD/EWO/WTT/2K19/EWFH/237(G)&(C) PI: Dr Arunangshu Mukherjee, Director, MRCAWTM and Co-PI: Dr Nidhi Didwania, BT, MRIIRS

Steps followed for site selection and construction of ASRS at FSC area

- Site selection
- 1. Joint inspection for finalization of possible locations for construction of ASRS
- 2. Detailed field investigations on hydrogeology for identification of sites on agreed locations for construction of ASRS
- 3. Identification and hiring of agencies for Surface geophysical and DGPS study
- 4. Surface geophysical study and DGPS survey to pin point the site within identified locations.
- 5. Hydraulic investigations on identified and pinpointed site for catchment delineation
- 6. Finalization of site for construction of ASRS

Construction of ASRS at FSC area

- 7. Based on results of detailed hydraulic studies calculated the runoff generation and silt load and dimension of desiltation, coagulation and filtration chambers for each site.
- 8. Preparation of working drawing and BOQ for tendering
- 9. Construction of ASRS involving various steps
 - a. Selection of Rig as per the geology of the area for drilling
 - b. Drilling of pilot hole on pinpointed site to decipher the aquifer geometry and nature-character of aquifer at selected site and preparation of litho-log
 - c. Borehole logging to finalize the well assembly in accordance to the litho-log
 - d. Lowing of assembly and construction of gravel pack tube well
 - e. Slug test to determine the intake capacity of constructed tube well
 - f. Mechanical digging of pits for construction of de-siltation, coagulation and filtration chamber.
 - g. Construction of de-siltation, coagulation and filtration chambers as per calculated dimensions given in the working drawing.
 - h. Filling of filter material in the filtration chamber constructed around tube well
 - i. Roof casting of ASRS
 - j. Hanging of Ferric chlorite dope through specially provided hanger in the coagulation chamber
- 10. Installation of Automatic water level recorder with telemetry at ASRS site
- 11. Testing of functioning of ASRS during monsoon and finalization of structure.
- 12. Feedback collection and monitoring of impact and radius influence of the constructed system. Popularization of the concept implemented through various media. Maintenance of constructed ASRS

Goverment Of India

Under World Bank Assisted, Central Sector Scheme of GOI- Atal Bhujal Yojana is being implemented in 14 districts of Haryana by IWRD, Govt of Haryana. MRCAWTM has been engaged as District Implementation Partner for three districts- Faridabad, Rewari and Palwal for an initial duration of 48 months through two projects. The project is about participatory groundwater management utilizing funds through convergence mode. MRCAWTM has to develop Gram Panchayat wise Water Security Plans for 296 GPs of 7 administrative blocks involving Gram Sabha in the planning. The Village Water and Sanitation Committee has to be engaged for data collection for Supply side and Demand Side Management works. The project is approaching to fulfil following objectives:

KEY DELIVERABLES

EOLOGICAL STUDIES-BARMER 70

Hydrogeological studies in Barmer district covering 5900Km2 for last 5 years is summarised below

- 1. Depth of wells drilled ranges from120 to 165m (Chowkhla 270 m)
- 2. Water level ranges from 82 to 108 mbgl,
- 3. Zone tapped largely from 90 to 163mbgl, at Chowkhla 234-268mbgl
- 4. Length of slotted casing used 24 to 34 m but one 45m
- 5. Dia of casing/ slotted pipe used 254mm, bore hole dia 508mm
- 6. Depth of lowering of pump 90 to 117m by and large
- 7. Pump HP 20 to 30
- 8. Lignite zone found in two locations at Sheo 60 to 64m and at Siyag 136m
- 9. The Jagadia sandstone aquifer at Siyag having water level 72m bgl

Founder Chair Professor	Late Dr D K Chadha, Former Chairman CGWB			
	(13 th April 2017- 30 th Dec 2020)			
Working Team				
Overarching leadership	Dr N C Wadhwa, DG, MREI			
ED & Dean Research	Dr Sarita Sachdeva, Professor, Biotechnology			
Chair Professor	Dr Dipankar Saha, Former Member CGWB			
Director	Dr Arunangshu Mukherjee,			
	Prof & Head, ES&E & Former Scientist, CGWB			
Dy Director	Ms Sneha Rai, Assistant Prof, ES&E, SET, MRIIRS			
Associates:	Prof Nidhi Didwania, Director, MRCMPP			
	Prof Brijesh Kumar, Dean Academics and			
	Dr H S Saini, Former Director GSI			
Research Associates:	Dr S Ali Khan, Sh Sandeep Punia & Mrs Priya Pahil			
Field Research Team	Barmer-(2) Ballabhgarh (9) Khol-Rewari (4)			
	Palwal (18) and Panchkula (3) TOTAL=39 person			

Manav Rachna Center for Advance Water Technology and Management (MRCAWTM),

Manav Rachna International Institute of Research and Studies (MRIIRS),

AT25- Sector-43, Surajkund Road, Faridabad 121004, Haryana, India Dr Arunangshu Mukherjee, <u>director.cawtm@mriu.edu.in</u>, <u>www.mrcawtm.in</u>

CAWTM/3/08-2023